AD-A124 707 DEVELOPMENT OF AN INTERACTIVE CONTROL ENGINEERING
COMPUTER ANALYSIS 'PACKA..(U) AIR FORCE INST OF TECH
WRIGHT-PATTERSON AFB OH SCHOOL OF ENGI. .

UNCLASSIFIED € J GEMBAROWSKI DEC 82

A

g
Ill8 & 2
| 1] R
L = o

=
IS
=
ll=
E- -]
B

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

b

e o s g g8 Ml T T et S e b gy g2 2) R
+ l

;

i

i

) i
DEVELOPMENT OF AN b

INTERACTIVE CONTR”. ENGINEERING i
COMPUTER ANALYSIS PACKAGE (1CECAP) }
FOR DISCRETE AND CONTINUOUS SYSTEMS ¢
THESIS (VOLUME | OF 1) g
AFIT/GE/EE/82D=-34 Charles J Gembarowski f
Ma jor USAF i

1

f

-f‘h TL.F.CTE

.7

-

A j

Approved for public release; distripution unlimited

AFIT/GE/EE/82D-34

DEVELOPMENT OF AN
INTERACTIVE CONTROL ENGINEERING
COMPUTER ANALYSIS PACKAGE (ICECAP)
FOR DISCRETE AND CONTINUOUS SYSTEMS

THESIS (VOLUME I OF II)

Presented to the Faculty of the School of Engineering
of the Air force Institute of Technology
Air Training Command
in Partial Fulfillment of the
. Requirements for the Degree of

Master of Science

by
Charles J. Gembarowski, B.S.
Major USAF
Graduate Electrical Engineering
December 1982

Approved for public release; distribution unlimited.

o B Wb RO AR

Preface

This investigation continues the development of the
Interactive Control Engineering Computer Analysis Package
(ICECAP) begun by Captain Glen T. Logan in his Master's
Thesis. This package applies to the design and analysis of
discrete and continuous control systems, A VAX 11/780 is
used as the host computer for ICECAP.

iy o TE: Y

I wish to thank the AFIT faculty members and students
who tested the computer program for me and provided valuable
comments. I wish to thank my fellow thesis students Captain
Kevin W. Rose, Captain Eugene C. Gilpin, Jr. and Second
Lieutenant Steven M, Hadfield for their advice on the use of
the VAX 11/780 and for their camaraderie,

P

I wish to thank my predecessor, Captain Glen T. Logan,
for the work he did in starting the ICECAP project and in
particular for the assistance and training he provided to
help me start my thesis project,

I wish to express my sincere gratitude to my thesis
' advisor, Dr. Gary B. Lamont, for his invaluable direction
and encouragement thoughout the entire thesis endeavor. I
also thank the other members of my thesis committee, Dr.
Robert E, Fontana, Dr. Peter S. Maybeck, and Mr. John Smith
for their efforts in reviewing my thesis and critiquing the
program.

Finally, I would like to sincerely thank my devoted and
loving wife, Missy, and my two children, Charles and
Christopher, for their help, sacrifices and endurance
thoughout the entire AFIT assignment,

el

e g g e A P g e R T

Iable of Contents

VOLUME I AND VOLUME II

PrefaCeQ.O..'......Oll.........’ii
List Of FIQUXeS . ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢« o o s o o s o o o o« o Vii

AbSttact L] L L J L * L4 [4 L L L4 L * * L 4 L L L4 . L] L] L] L] L[4 viii

VOLUME I
CHAPTER 1 INTRODUCTION
1 [J. BACKGROUND e e e e o & © 5 o ¢ 6 e ¢ o e e o o @ 1-1
1 . 2 INVESTIGATION OF OmER TOOLS s o e e e e e o e oo 1 "2
1 . 3 PROBLEM STATEMENT e @ & o ® o o ¢ ° 9 o o ¢ o 1 —3
104 SCOPE ® ® e ® e e e @ e * & ° 0 ¢ & o ¢ ° o o o 1‘4
105 APPROACH e e @ e @ o o o o 6 ¢ o e © & @ o o 1"5
1 . 6 OVERVIEW OF THESIS e @€ o o e e ¢ 2 5 s o e ° 0 o 1"7
CHAPTER 2 REQUIREMENTS DEFINITION
2 . 1 INTRODUCT ION e o o o e o o o o e o o s o o 2"1
2.2 DEFINITIONS OF PRIORITIES e o o o o o e o s s o 2=2
2 ® 3 REQUIREMENTS ® @ 9 o ® @ o ® & ¢ o o e ° o s P 2‘3
2 o 4 TESTING REQUIREMENTS ¢ e ¢ o & ¢ @ ¢ @ © o s » . 2-9
205 SUMMARY e e o & o o o @ o e ¢ ¢ e o o e v * » 2_10
CHAPTER 3 DESIGN STRUCTURE
3 -1 INTRODUCTION e o o e 8 e o ¢ e o ¢ o e ¢ ° s » 3-1
3 . 2 REQUIREMENTS SUMMARY e ® o » 6 e @ e @ o o 9 o o 3-2
3 L] 3 DESIGN CONSTRAINTS ® & & o o ¢ o ¢ e * e o ¢ ¢ o 3"'3
3 [4 DESIGN APPROACH e o ® ® & & ° O e o o ° o e ¢ o 3_4
3 05 USER .FRIENDLINESS. ® ® o e 9 © ¢ © e o o o & o 3—6
3 ° 6 ENVIRONMENT ® e 6 & & ° 8 o & & O & " ° e ¢ 0+ 0 3-8
307 SUWY e o o o @ o ¢ o & 0 e ¢ e o 0 ¢ & o o 3-11

iii

s s £ b 8 S o b i

Iable of Contents

CHAPTER 4 IMPLEMENTATION

4 . 1 INTRODUCT ION ® o e o ® 5 o o & % 8 ° 6 & ¢ o e 4-1
4 2 SYSTEM DESIGN e @ @ e e o ¢ @ o o o o o ¢ o o o 4-1
4 ° 3 AI.IGORITHMS o e * o @ o o @ o 0o o e ¢ o o 4-4
4 [} 4 PASCAL/FORTRAN INTERFACE e e e e s ¢ s o e o o 4-11
4 5 DESIGN DOCUMENTATION e @€ @ o @ ¢ o & * o o o o 4-13
4 6 SUHMARY ® e © e ° e ¢ & ¢ o & & & o © o o o+ o 4-14

CHAPTER 5 TESTING

5 . 1 INTRODUCT ION ® o o © @ & & & ° e o ¢ € o ¢ o » o 5"'1
5.2 TESTING REQUIREMENTS . « ¢ ¢ o o o o« o ¢ o o o o 5=1
5 . 3 TESTING PLAN . e e o e o e o © ¢ e o o @ * o o o 5"2
5 . 4 TESTING RESULTS e ® 6 & ¢ e o e ° ® ° o e ¢ o o 5-6
5 . 5 SUMMARY e e @ 8 e e e o O e ¢ & ° 8 e ° °o @ ° @ 5"7

CHAPTER 6 CONCLUSIONS AND RECOMMENDATIONS

6 . 1 INTRODUCT ION ¢ o o o 6 o * e o e © e O ° o o ° o 6 -1
6 . 2 CONCLUSIONS e e o e ® ® * & 6 e o e e o *+ o * o 6"1
6 . 3 RECOMMENDATIONS ® & o ® & @ ° e o e & ¢ o o * o 6 "3
3 6 . 4 SUMMARY ® ® ® 6 e o 9 ® * e o 6 o e e e o o o o 6 =7

BIBLIOGRAPHY.oooootooaoooo.oooo.oBib-l

APPENDIX A STRUCTURE CHARTS

A. 1 INTRODUCT ION e o o ¢ o o o o o * o & o o o A-l
A. 2 STRUCTURE CHART STANDARDS e o o & o o o ° 8 o @ A-l
Ao 3 ICECAP MODULE HIERARCHY ® e @& o o o ® o ¢ o o o A"Z
Ao 4 LIST OF STRUCTURE CHARTS e o o o s & © o ¢ e o o A"‘
A.S SUMMARY ® © @ o e 6 o e 0 o 9 0 & o & o ¢ o o A"'31

APPENDIX B DATA DICTIONARY

B.l INTRODUCTION ® s & o o o © & © & s v 0 ° ¢ e o o B-l
802 DICTIONARY STANDARDS ® o e o ¢ & e @ © © o o o o B-2
Bo3 DATA DICTIONARY e o o @ ® 06 © ° 6 ° ° © ¢ o o @ B"3
8.4 DATA DICTIONARY BLANK FORH e ¢ o o o o o o o @ 5-23
B.5 SUHHARY ® © 6 e o o & o & & & * o e ¢ o ° ° » B—24

whia pT

Iable of Contents

APPENDIX C PROBLEM REPORTS

c L] 1 INTRODUCT ION L] L] * L] L (] L 4 [] [) L L]
C.2 PROBLEM REPORTS . . . e e o o
C.3 BLANK PROBLEM REPORT FORM e o o o
C L 4 SUMMARY L] L] L L) L4 [L L] L] L 4 [[4 °
APPENDIX D COMPUTER AIDED DESIGN PACKAGES
D L] 1 INTRODUCT ION L d L L] L] L 4 L] L J L] L] L L
D.2 PROGRAM SYNOPSES ¢ ¢« o « ¢ o o o o
D [3 SUMMARY [[] . L L) * L d L] L 4 L] L] L L

APPENDIX E COMMAND LANGUAGE DEFINITION

E.l INTRODUCTION
E.2 LIST OF COMMAND LANGUAGE DEFINITIONS .
E.3 COMMAND LANGUAGE DEFINITION STANDARDS
E [] 4 SUMMARY L LJ o L] [L L L] L L L L L d o *

APPENDIX F FORTRAN MODULE DESCRIPTIONS

F.l INTRODUCTION
F.2 DESCRIPTION OF NEW FORTRAN MODULES o
F.3 DESCRIPTION OF REVISED FORTRAN MODULES
F ® 4 SUMMARY L] * L] * L 4 L] L] L[] [) L L] L] . . L

VOLUME II

APPENDIX G ICECAP PASCAL SOURCE CODE . .

APPENDIX H SOURCE CODE FOR ICECAP FORTRAN

APPENDIX I FILES INFORMATION

1 INTRODUCTION . . « «
2 COMMAND FILES . . &
3 OPTION FILE FOR ICER
4 ICECAP DATA FILES .
5 PROGRAM CODE FILES .
6 s UMMARY * [] L L [L]

e & & & o o
¢ & & & o o
¢ O & o o @
e & o o o o
® & & ¢ o o
L * o - * L)
e O ¢ e o o

FOR CONTROL

MODULES . .

® & & s o o
¢ © o o o
® e @& 7 e o
® @& & @ o o
e O & @ o o
e & & ¢ o o

« D-1
O D—l
D-12

E-1
E-1
E-2
E-8

* L] * -*

P-1
F-1
F-2
P-5

I-11
I-12
I-22

T R A

R e e e e el

Table of Contents

APPENDIX J TESTING DOCUMENTATION

J.1 INTRODUCTION . .
J.2 TESTING DATA . .
J.3 SUMMARY . . .

L] [)

e o
e o L]
L] L [)

ICECAP Gross Data Flow Diagram , .
ICECAP Overall Structure Chart ., .

ICECAP Gross Flow Chart . . .

Flow Chart for Procedure READCOM
Flow Chart for Procedure DICTIONARY
Flow Chart for Procedure INTERPRET

Structure
Structure
Structure
Structure
Structure
Structure
Structure
Structure

DISPLAY_OR_PRINT

Structure
Structure
Structure
Structure
Structure
Structure
Structure
Structure
Structure
Structure

LOCUS_AUTOSCALE .

Structure
Structure
Structure
Structure
Structure
Structure
Structure
Structure

Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart

Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart

Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart

for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for

Procedure
Procedure
Procedure
Procedure
Procedure
Procedure
Procedure
Procedure
[] * * * ®
Procedure
Procedure
Procedure
Procedure
Procedure
Procedure

BOXIT
COPY

DEFINE
DEFINE__ PROMPT
DEFINE_TF . .
DEF_TF_PLANE
DICTIONARY .,

L] L] . L] L] L 2 L] L]
* * * L] ® [] [] L]
*® & & & o O o ¢ o
L] L] L] L] L L] L] [] L]

FORM L] L] L d
HELP . . &
HELP_COPY .,
HELP_INITIAL
HELP_PROMPT .
HELP_SYSTEM .

Program ICECAP , . . .

Procedure
Procedure
Procedure
* L] * L] L]
Procedure
Procedure
Procedure
Procedure
Procedure
Procedure
Procedure
Procedure

Command
Command
Command
Command
Command
Command
Command

Language
Language
Language
Language
Language
Language
Language

Definition
Definition
Definition
Definition
Definition
Definition
Definition

for
for
for
for
for
for
for

INTERPRET . .
LOCUS L) L4 L

LOCUS_MAGNIFY
LOCUS_SHRINK
PAUSE . . &
READCOM . .
TITLE_SLIDE
TURN . .
TURN_PROMPT
TORN.X . .
cCopy . .
DEFINE .
DISPLAY .
FORM ., .
HELP . .
PRINT . .
TURN . .

L * L] * L) L [) . L] [] L] L] L]

o o o L * ©® & e o e o . [)

L] e @& & e ¢ @ e O o L] e e & & o

® o o @ ¢ o & & o ® &6 @& €& e ° 8 & & o 0 o o

¢ @ o & & o o s @ o s @ o * & o

L] ® o @ o o o e & & o @ o e o @

AFTT/GE/EE/82D-34

This thesis reports on an effort to design and
implement a modern interactive computer—aided design and
analysis package for control systems. This package applies
to discrete and continuous time systems. The thesis effort
continues the effort bequn by Captain Glen T. Logan who used
a control engineering design and analysis computer program

called TOTAL as his starting point.

This thesis project uses top-down structured analysis
and programming techniques to define the new program called
ICECAP (Interactive Control Engineering Computer Analysis
Package). A user-oriented command lanaguage forms the basic
structure of ICECAP, On-line assistance is provided to the
user, The program makes use of CRT (Cathode Ray Tube)
terminals with a limited graphics capability to improve the

user environment,

The program structure allows features to be added in a
modular £fashion 8o that others can continue the effort.
Emphasis was placed on implementing the continuous time

functions f£irst,

viii

P g —p ey

CiaarTag o n e

{ gy

D
-

CHAPTER 1
INTRODUCTION

1.1 BACKGROUND

Control system design is a very complicated engineering
process., There are many steps involved and sophisticated
design tools are required for each step. Furthermore, the
control system design process is a cyclic one requiring many
iterations that can be very tedious if accomplished
manually. Tools to aid in the control systems design
process have evolved somewhat independently so that the need

for a systems approach to computer—aided design of control

systems is apparent.

Two students of the Air Force Institute of Technology
(AFIT), PFrederick L. O'Brien [52] and Stanley J. Larimer
[38] used a systems approach in designing and implementing
such a tool. Their system, a very powerful software
package, is in use today and is known as TOTAL, TOTAL is
hosted on the CDC (Control Data Corporation) Cyber, one of

the most heavily used computers at Wright-Patterson Air

1-1

A, 85T haumcon-

T WP, T gt s)

g er———gapne

2 o s g R

6 A o

[Ty

B
‘

INTRODUCT ION

Force Base,

Another AFIT student, Glen Logan [4l1], successfully
transported this design tool from the Cyber to the VAX
11/780 in an effort to improve the running environment of
TOTAL and to reduce the workload on the Cyber. The computer
program in this new environment is known as VAXTOTAL.
VAXTOTAL is the foundation upon which this thesis
investigation is built, VAXTOTAL is a development version
only--it is not meant for release. This thesis effort
continues Logan's work. The computer program that results
from this thesis investigation will be known as ICECAP
(Interactive Control Engineering Computer Analysis Package).
This program will be used for the analysis and synthesis of

both digital and continuous systems.
1.2 INVESTIGATION OF OTHER TOOLS

There are other control system design and analysis
tools available. Appendix D is a synopsis of some of these
tools. This appendix includes tools investigated by Logan
in his thesis [41) as well as tools found during this thesis
investigation, References are given for each tool that is

summarized in Appendix D.

TOTAL and VAXTOTAL were chosen as the starting point
for this thesis effort because they are Air Force owned, are

well established at AFIT, and have proven themselves to be

1-2

INTRODUCT1. N

Ao
” N

very useful and powerful tools with potential for expansion,
The time and budget allotted to a thesis effort does not
allow for a costly and lengthy procurement of other tools
nor for acquiring the rights to modify commercially

available tools.
1.3 PROBLEM STATEMENT

Although it is a very powerful design tool, TOTAL has
many deficiencies in its structure and in its usability,
Reference Appendix D for a description of TOTAL's

capabilities.

1.3.1 Structure - As modern control theory evolves, it will
be necessary to extend TOTAL to incorporate new features,

! TOTAL's structure makes this growth very difficult., The

fact that TOTAL had to be segmented into an overlay

PRGNS

structure in order to fit it onto the Cyber makes software

maintenance more difficult. The use of FORTRAN Common

R ST N

variables makes the modules too tightly coupled.

{ 1.3.2 Usability - TOTAL now favors the experienced user.

For example, it requires the user to supply codes in the

5 , form of option numbers., Some of the command words that

TOTAL uses are not action words, so they cannot be

-
e e LD

associated with the action that is to be taken. These
characteristics make it difficult to learn how to use the

system. As a result, new users are discouraged. The

1-3

A p
. -

INTRODUCTION

problem is especially severe at AFIT where the primary user
is the control systems student who does not yet have a firm
grasp of control theory. This type of user has the double
problem of having to learn new material and the use of a
computer-aided design tool. The environment in which the
student must use TOTAL (i.e., the Cyber accessed via
teletype terminals) is a source of frustration rather than

an aid to the learning process.

The main objective of this thesis investigation is ¢to
overcome these problems by making the system easy to learn
and usable for both experienced and inexperienced personnel

and by making the computer environment more pleasant.

1.4 SCOPE

This thesis investigation will design a modern control

system computer-aided design tool called ICECAP,

l.4.1 Sound software engineering [37, 64, 66] and human
engineering [47, 56, 57) techniques will be used throughout
the entire effort,

l1.4.2 The thesis effort will revise and incorporate the
existing modules from TOTAL that are needed for ICECAP,

INTRODUCTION

l.4.3 The primary structure will be provided through the
use of the Pascal programming language {22, 23, 24, 25, 34,
37, 54, 60). The heart of the computation will be done by
the FORTRAN modules if they are best suited for this task,
However, the design will be such that either Pascal or

FORTRAN can be used for the lower level modules.

This thesis effort will design ICECAP in a highly
structured and modular fashion so that subsequent thesis
students can understand the current version of ICECAP,
complete the system, and maintain the system in an orderly

fashion.,

1.5 APPROACH

A two-phase approach is used in this development:

1.5.1 Requirements Definition Phase -~ The major effort in
this phase will be ¢to evaluate the existing versions of
TOTAL and VAXTOTAL. The major steps to be taken in this

phase are as follows:
l.5.1.1 Establish and study the baseline of VAXTOTAL.

1,5.1.2 Run test cases in order to identify errors with
TOTAL and VAXTOTAL. Establish a test plan that will be used
to determine whether or not VAXTOTAL produces results
equivalent to TOTAL,

F T

INTRODUCTION

1.5.1.3 Establish the requirements for ICECAP using past

efforts as the point of departure.

1.5.1.4 Demonstrate the feasibility of interfacing a
FORTRAN program with a Pascal program on the VAX. This
interface is at the heart of Logan's design for ICECAP but
was not used in VAXTOTAL,

1.5.1.5 Demonstrate the feasibility, usefulness and
acceptance of an on~line capability that will provide
assistance when the user demands it and when the program

senses that the user needs it.

1.5.2 Design/Implementation Phase - This phase consists of

performing and documenting the following tasks:

1.5.2.1 Design a program structure that will allow
follow-on thesis students to design, test, and modify the

computer program in stages,

1.5.2.2 Correct errors in the present implementations of
TOTAL and VAXTOTAL including correcting the major

inconveniences in using the program.

1.5.2.3 Implement and interface the computer progran

modules as time permits.

y L

INTRODUCTION

1.6 OVERVIEW OF THESIS

This thesis is contained in two volumes, Volume I
contains all of the chapters and Appendices A through F.
Volume II contains Appendices G through J, The major

chapters and appendices are briefly summarized as follows:

Chapter 2 provides the requirements definition for
ICECAP in the form of a specification with an emphasis on
the functional requirements. The specification is meant to
cover the requirements for the entire ICECAP project. This

thesis implements only a subset of this specification.

Chapter 3 documents the design structure for ICECAP,
This chapter is designed to transfer the "corporate memory"
of "why the design is what it is"™ to follow-on thesis

students.

Chapter 4 documents the implementation of ICECAP.
Voluminous details of the design are provided in appendices
and separate documents as appropriate, These details are
provided so that other thesis students can continue the

effort.

Chapter 5 defines the requirements on how to test
ICECAP, These tests will establish whether or not ICECAP

satisfies the requirements defined in Chapter 2.

INTRODUCTION

Chapter 6 contains the conclusions reached in this
thesis investigation and gives recommendations regarding

follow-on efforts,

Appendix A contains the structure charts for ICECAP in
alphabetical order. These charts establish the program
modules needed for ICECAP and show the data and the control

flow through the program,

Appendix B is the data dictionary for the ICECAP
modules. The dictionary entries are in alphabetical order
and give an overview of the function of each module and the

parameters and variables used in each module,

Appendix C is a set of reports that document problems
with TOTAL, VAXTOTAL, and ICECAP, These reports serve as a
basis for correcting the deficiencies in these three

programs,

Appendix D is a synopsis of existing and planned

computer-aided design packages for control systems.

Appendix E contains the definition of the ICECAP

command 1language in flow chart form. These charts provide

an unambiguous definition of the language.

Appendix F contains descriptions of the new and revised

FORTRAN modules used in ICECAP,

INTRODUCTION
Appendix G contains the Pascal source code for ICECAP,

Appendix H contains FORTRAN source code for ICECAP.
The modules are listed in alphabetical order. Only new and
revised modules are included. The unchanged modules from
TOTAL and VAXTOTAL have been documented by Logan in the form
of unpublished source code listings,

Appendix I contains information about where the
important computer files relating to this thesis effort are

located.

Appendix J contains the relevant documentation

resulting from testing ICECAP,

These chapters and appendices are meant to be "living"®
documents, They are expected to change as the result of
follow-on thesis efforts as more and more of ICECAP becomes

defined and implemented.

AT o iy . | I NP

e

|
|
|
%
‘
§

s A R i e A b

CHAPTER 2
REQUIREMENTS DEFINITION

2.1 INTRODUCTION

This chapter forms the systems requirements
specification for the entire ICECAP project. The meanings
of requirements priority categories are first defined, Then
the requirements are stated in logical order, with the
priority defined for each requirement. Functional
requirements, human engineering requirements, and software
engineering requirements are included, This thesis effort
will implement a subset of these requirements, viz., the
priority one requirements, It is anticipated that follow-on
thesis efforts will implement the other requirements,
Finally, the testing requirements are stated and organized
into four major categories of functional requirements
testing, program flow testing, on-line assistance capability

testing, and output capability testing.

2-1

. B NI € 35 MR N TN KL e R e

REQUIREMENTS DEFINITION

2.2 DEFINITIONS OF PRIORITIES

The requirements below have been categorized into one
or more of three priorities in order to facilitate dividing
out the entire ICECAP project into meaningful thesis
efforts, The definitions of these priorities are as

follows:

2.2.1 Priority One - This priority means that this
requirement must be at least partially contained in the
initial program design in order to have a running program
with which to demonstrate both feasibility and capability.
This may involve both requirements that are already
satisfied by VAXTOTAL and requirements that are new to
ICECAP. This category generally refers to all of the human
interface requirements, to the most important features
required for continuous time design and analysis, and to the
software engineering requirements, Continuous time features
are considered a higher priority than the discrete time
features because generally students are taught the
fundamentals of continuous control systems before the

fundamentals of discrete control systems,

2,2,2 Priority Two - This priority refers to requirements
that are at least partially implemented in VAXTOTAL but need
not be implemented in ICECAP at ¢this time in order to

demonstrate feasibility and capability. This category

2~-2

-

REQUIREMENTS DEFINITION

generally refers to the matrix manipulation features, the
discrete time design and analysis features and the remainder

of the continuous time design and analysis features.,

2,2,3 Priority Three - This category refers to the
functional requirements needed to have a complete control
system computer-aided design package. It includes
functional requirements related to the control system design
area presently within the state of the art but not yet
implemented in VAXTOTAL. Examples of these kinds of
requirements are the stochastic estimation and control

requirements,
2.3 REQUIREMENTS

ICECAP shall assist the user in performing
conventional, modern, and stochastic control system design
and analysis for both discrete and continuous systers. The
specific requirements and their priorities (in parentheses)

are as follows:

2.3.1 Functional Requirements - ICECAP shall provide the
following functional capabilities:

2,3.1.1 Transfer Function Manipulation (1)
2.3.1.1.1 Open Loop Transfer Function (1)

2.,3.1.1.2 Closed Loop Transfer Function (1)

’

2-3

Ry

e T A A P A e M, o

2.3.1.1.3

2.3.1.1.4

2.3.1.1.5

2.3.1.1.6

REQUIREMENTS DEFINITION

Forward Transfer Function (1)

Feedback Transfer Function (1)

Return Difference Transfer Function (2)

Block Diagram Manipulation (2)

2.3.1.2 Matrix Algebra (2)

2.3.1 .2.1

2.3.1.2.2

2.3.1.2.3

2.3.1.2.4

2.3.1.2.5

2.3.1.2.6

2.3.1.2.7

2.3.1.2,8

2.3.1.2.9

Matrix Addition (2)

Matrix Subtraction (2)

Matrix Multiplication (2)

Matrix Inversion (2)

Matrix Transposition (2)

Matrix Factorization (2)

Matrix Square Roots (2)

Solve Ax=b (2)

Singular Value Decomposition (2)

2.3.1.3 Polynominal Manipulation (2)

2.3.1.4 Calculator Functions (2)

2.3.1.5 State Variable Equation Manipulation (2)

2-4

2.3.1.6

2.3.1.7

2,3.1.8

2,3.1.9

2,3,1.10

2.3.1.11

2.3.1.12

2.3.1.13

2.3.1.14

2.3.1.14,

2.3.1.14.

2.3.1.14,

2.3.1.15

2,3.1.15,

2.3.1.15.

203 .1 .15.

2,3.1.16

REQUIREMENTS DEFINITION
Control System Definition (1, 2)
Steady State Response Analysis (1)
Transient Response Analysis (1)
State Transition Matrix Evaluation (2)
State Equation Solver (2)
Laplace Transformations (2)
Inverse Laplace Transformations (2)
Partial Fraction Expansion (1)
Frequency Response Evaluation (2)
1 Bode Plots (2)
2 Direct Polar Plots (2)
3 1Inverse Polar Plots (2)
Stability Analysis (2)
1 Routhian Array (2)
2 Nyquist (2)

3 Nichols Plots (2)

Steady State Error Analysis (2)

NI T e

oy ey et e v

T i s e g

REQUIREMENTS DEFINITION

2.3.1.17 Root Locus Analysis (1)

2.3.1.18 Root Locus Compensation (2)

2.3.1.18.1 Cascade Compensation (2)

2.3.1.18.2 Feedback Compensation (2)

2.3.1.19 Closed Loop Pole-Zero Assignment (2)

2,3.1.19.1 Guillemin-Truxal Design (2)

2.,3.1.19.2 State Variable Feedback (2)

2.3.1.20 Algebraic Riccati Equation Solver (3)

2,3.1.21 2 Transformation (2)

2.3.1.22 Inverse Z Transformation (2)

2.3.1.23 Digital Computer Compensation (2)

2,3.1.24 PFPilter Design (2)

Estimation and Control Design and

2.3.1.25 Stochastic

Analysis (3)

2,3,1.25.1 Kalman Filter Design for Continuous and Discrete

Time Measurements (3)

2,3,1.25.2 Analysis of Kalman Filter Design (3)

2,3.1.25.,3 Square Root Filtering (3)

2-6

et i

o e + A AN) nimg b BB -

REQUIREMENTS DEFINITION
2.3.1.25.4 U-D Covariance Factorization Filtering (3)
2.3.1.25,5 Weiner Filtering (3)
2,3.1.25.6 Optimal Smoothing (3)

2.3.1.25.7 LQG (Linear Quadratic Gaussian) Controller

Design for Continuous and Discrete Time Systems (3)

2.3.1.25.8 Observer and Full-~-State Feedback Controller

Design via Pole~Placement Methods (3)

2.3.1.26 Z-Domain Stability Analysis (2)
2.,3.1.26.1 Jury-Blanchard Test (2)

2.3.1.27 S;Domain to W-Domain Transformations (2)
2.3.1.28 S-Domain to Z-Domain Transformations (2)
2.3.1.28.1 First Backward Difference (2)
2.3.1.28.,2 Tustin Transformation (2)

2.3.1.29 Pseudo Continuous Time Control System Analysis and

Synthesis (2)

2,3.1.30 Compensator Design (2)

2.3.1.30.1 Direct (DIR) Method (i.e, all design is done in

the z-domain) (2)

Ty A Y

-~

REQUIREMENTS DEFINITION

2.3.1.30.2 Digital (DIG) Method (i.e., the design is
started in the S-domain and then transferred to the

Z-domain) (2)

2.3.2 Human Enginering Requirements - ICECAP shall be user
friendly:

2,3.2.1 ICECAP shall provide on-line assistance in its use

upon demand. (1, 2, 3)

2.3.2.2 ICECAP shall be command oriented. A means to
assist the users in formulating commands shall be provided.
This assistance shall not be distractive, It shall not

impede those users who do not need on-line assistance. (1)

2,3.2.3 ICECAP shall provide instruction in the varicus
aspects of control theory through some sort of teaching

facility. (2, 3)

2.3.2,4 1ICECAP shall notify the users when they have erred
in providing input, This shall be done in a non-hostile

manner using meaningful error messages. (1)

2.3.2.5 ICECAP shall provide a facility for providing
meaningful and selective printed output as the means of

documenting the users' designs of control systems. (1)

2.3.2.6 ICECAP shall provide a means of storing the

essentials of a design in progress so that the users may

2-8

e

e f T S A I = y—rer

REQUIREMENTS DEFINITION

continue their designs at other sessions, (1)

2.3.2.7 ICECAP shall provide a capability for the users to
define command strings so that they may iterate a design
without having to type in the same commands repeatedly.
This shall include a facility for the users to specify data

as part of the command string. (2)

2.3.3 Software Engineering Requirements - ICECAP shall be
designed using sound software engineering principles such as
those advocated in the software engineering literature [37,
64, 66] so that it can be easily maintained and augmented.

(1)

2,3.3.1 ICECAP shall be as portable as reasonable, i.e., it

shall be capable of being rehosted on other VAX's. (1)
2,3.3.2 ICECAP shall be modular, (1)

2,3.3.3 ICECAP shall use loosely coupled modules as much as
possible., (1)

2.4 TESTING REQUIREMENTS
ICECAP shall be tested as follows:

2.4.1 Functional Requirements - The functional requirements
that have been implemented in ICECAP shall be tested using
known test cases, such as the sample problems in the student

handouts [30]. It shall be determined whether or not ICECAP

2-9

e

1 apm

REQUIREMENTS DEFINITION

provides results consistent with (or better than) the
results of using TOTAL for these problems. ICECAP numerical
results shall be considered consistent when they are the
same as the results of TOTAL within a tolerance of 0.001.
ICECAP results shall be considered better than TOTAL's
results when a deficiency in TOTAL has been corrected in

ICECAP.

2.4.2 Program Flow - ICECAP shall be run to determine
whether or not the program flows properly. The program must
transistion to valid known states. The program must not
hang in an endless 1loop. The ability to exit gracefully

from the program must be demonstrated.

2.4.3 On-line Assistance - The ability of the intended user
to formulate the commands necessary to design and analyze a
control system with the on-line assistance that is provided

must be demonstrated.

2.4.4 Output Capability - The ability to document a control
system design and analysis selectively and conveniently must

be demonstrated.
2,5 SUMMARY

The systems requirements specification for the entire
ICECAP project has just been presented., Priority categories
have been established and their meanings defined. The

2-10

PN

REQUIREMENTS DEFINITION

functional requirements, human engineering requirements, and
the software engineering requirements were stated and
priorities were assigned to each requirement. Finally, the
testing requirements were stated and organized into four
major categories of functional requirements testing, program
flow testing, on~line assistance capability testing, and

output capability testing,

T — -

o e b s i S g =

CHAPTER 3
DESIGN STRUCTURE

3.1 INTRODUCTION

This chapter addresses the design structure for those
requirements stated in Chapter 2 that are to be implemented
as a result of this thesis effort. Basically, the chapter
addresses the priority one requirements but at the same time
dictates a design structure that will support the
implementation of all of the design requirements at some

future time,

The chapter begins with an outline of the top-level
requirements that affect the ICECAP design structure, Next,
the constraints that influence the structure are addressed.
The approach used to derive the design structure is
provided. Finally, how the need for user "friendliness"™ and
how the computer environment are related to the structuring

of the ICECAP design are addressed,

DESIGN STRUCTURE
3.2 REQUIREMENTS SUMMARY

This section outlines the top-level requirements that
drive the design structure of ICECAP, The paragraph

references to the requirements of Chapter 2 are provided.

3.2.1 Specifically, ICECAP shall be designed to assist the
user in performing control system design and analysis for

both discrete and continuous systems (cf. para. 2.3).

3.2,2 Certain basic functional capabilities shall be
provided in the initial design of ICECAP in order to have a
working system and to prove the concept so that further
implementation of functional capabilities can proceed.
These initial capabilities shall include: transfer function
‘manipulation (cf. para. 2.3.1.1); steady state response
analysis (cf., para. 2.3.1.7): and root locus analysis

(cf. para. 2.3.1.17).

3.2.,3 ICECAP shall be designed to be user "friendly".
Specifically, ICECAP shall provide on-line user assistance
in the form of prompting upon demand; ICECAP shall allow
the user to specify action by explicit commands that are
readily recalled by the user rather than by cryptic codes
which must be looked up in a manual; ICECAP shall provide
error checking and notification in a clear and non-hostile

manner (cf. para, 2.3.2).

DESIGN STRUCTURE

3.3 DESIGN CONSTRAINTS

The design of ICECAP is constrained by several factors
including the size of VAXTOTAL, the availability of
resources, and the amount of time available for the thesis

project,

3.3.1 Program Size -~ Because of its large size, a complete
redesign and rewrite of VAXTOTAL is not practical. This
constraint dictates that ICECAP be the combination of a new
program written in a language suitable for processing user
commands and of selected modules from VAXTOTAL written in
FORTRAN, The FORTRAN modules should be capable of
performing the powerful calculations that a control system

design tool demands.

3.3.2 Availability Of Resources - The ICECAP design is also
constrained by the existing computer facilities and computer
programming languages available at AFIT. This includes the
existing input and output devices presently available at
AFIT. These constraints have very positive aspects since
they drive the use of a virtual memory system, the use of
interactive terminals, and the use of the Pascal language.
The input and output devices constraint means that there can
be very little plotting capability designed into the program
at this time., However, the design must allow for a plotting
capability to be added at a later time,

3-3

O SR TRy ST S A (Y

GRS e T A ST AP TSI M T, SRS,

DESIGN STRUCTURE

3.3.3 Time - The amount of time that any one thesis student
can be reasonably expected to devote to such a large project
definitely constrains the design., This constraint dictates
that the program be designed in a modular fashion using a
tree structure so that new features can be implemented
later. This constraint also dictates that the program be

well documented.

3.4 DESIGN APPROACH

The design approach for ICECAP was to use top-down
structured analysis, This approach developed into five

major steps as follows:

3.4.1 Develop The Gross Data Flow Diagram - The first step

was to develop the gross data flow diagram shown below,

USER USER PROGRAM DEVICE
INPUT COMMAND DATA DATA

2
EXECUTE
PROCEDURE

3
SEND DATA
TO OUTPUT
DEVICE

Figure 3-1, ICECAP Gross Data Flow Diagram

The above diagram was developed by Logan [4l: 48).

Ex g

P

DESIGN STRUCTURE

Basically, the user provides input which is then interpreted

as a command. The command then executes a procedure or a

series of procedures at which time data may be required of
the user. The execution of the procedure(s) results in data

going to an output device or file.

3.4.2 Develop The Overall Program Structure - Next, the

overall program structure was developed as shown below.

ICECAP
READ INTERPRET EXECUTE
COMMAND COMMAND COMMAND
WORDS
PROVIDE
ON-LINE
ASSISTANCE

L

Figure 3-2, ICECAP Overall Structure Chart

Commands or partial commands input by the user are read and
on-line assistance is provided as necessary to aid the user
in formulating complete commands, Once a command is fully

formed, the interpret modules decode the command., Once

3-5

et

U P O T ot S T o, TR

|
»
i
B
|
!
|
F

DESIGN STRUCTURE

decoded, the commands are translated. The translation is
then passed to a set of modules that actually execute the
command, The process repeats until the user stops the

program,

3.4.3 Define Syntax PFor One Command - Next the syntax
diagram was developed for one specific command, the DEFINE
command. This command is of sufficient complexity so as to
ring out the ability of the design structure to support the
Processing of multi-word commands. The details of the

syntax for this command are found in Appendix E.

3.4.4 Develop The Modules - The modules to implement the
overall design structure and to implement the DEFINE command
specifically were then developed. The details of this

implementation are the subject of Chapter 4.

3.4.5 Iterate The Process - With the overall structure now
developed and one command implemented and working, the
development process now repeats and the syntax diagrams for
other commands are developed and implemented one by one,
The program thus grows in a tree-like fashion. Also, the

structure and the modules are refined in this step.
3.5 USER "FRIENDLINESS"

The user is the reason why ICECAP exists, Special

attention has been given to making the system "friendly" to

DESIGN STRUCTURE

the user. Special prompting features have been built in to
the system so that a new user can quickly learn and enjoy
using the system. These features have been designed in such
a way that an experienced user is not distracted by the

on-line help that is available,

The system is able to sense when the user needs
prompting and provides only that prompting which is needed.
The design structure for this process is as follows. The
user issues a carriage return as a signal for the system to

respond. There are three cases of how the system responds.

3.5.1 1Invalid Command - If the user has entered an invalid
command, the system responds with a message as to the nature
of the error and then user has the opportunity to re-enter

the command.

3.5.2 Incomplete Command - If the user has entered an
incomplete command, the system responds with choices for the
next command word. The design structure allows a short
explanation of the nature of each of the choices. The user

simply types in one of these choices.

3.5.2,1 Complete And Valid Command - If the user has

entered a complete and valid command, the system responds by

executing the command.

Ee e

DESIGN STRUCTURE

3.6 ENVIRONMENT

The computer environment determines how M"user friendly” a

system can be made. The design structure of ICECAP

capitalizes on the pleasant computer environment that the
host computer affords in order to maximize the user

"friendliness”.

3.6.1 Screen Terminal - The design structure of ICECAP
takes advantage of the fact that the user will be using a

screen terminal rather than a printing terminal (although

the structure can accommodate the use of a printing terminal

if one is desired). These advantages are faster response

time, the ability to highlight important information, the
ability to wuse graphics, and the ability to review

information before printing it.

3.6.1.1 Response Time - Because the system has a fast
response time, ICECAP is structured to provide the user with

ﬁf more meaningful information. For example, as far as the

‘f user can tell, it takes no longer to print the menu of valid

| initial commands words and the prompt asking the user for

input than it does to print only the prompt. This menu

- v

certainly makes the working environment more pleasant for

the user at no additional time expense,

PRI NSO

DESIGN STRUCTURE

3.6.1.2 Highlighting - The structure of ICECAP provides the
capabilty to highlight text at anytime that highlighting is
needed. This gives the ICECAP programmer the capability to
emphasize command words so that the user can learn the
ICECAP command language much more quickly. The user
remembers the highlighted words and can associate these
words as building blocks for valid ICECAP commands. The
structure charts of Appendix A show that ICECAP has been
designed in such a way that highlighting can be turned on

and off by subprogram calls.,

3.6.1.3 Graphics - Similarly, ICECAP has been structured to
support a capability to turn the terminal graphics on and
off by subprogram calls. This can be seen by reading the
structure charts in Appendix A. This gives the programmer
the opportunity to enhance the user's understanding of
control theory and the use of the design tools by drawing

control system block diagrams on the terminal.

3.6.1.4 Selective Printing - One of the most aggrevating
aspects of doing a computer-aided design on a printing
terminal is that the resulting output is a running tally of
all of the design iterations and user errors, The result is
that it is very difficult to walk away from the design
session with a neat bottom 1line design suitable for
submission to an instructor or to an employer. At best, the

user sorts through the printout which may be several yards

3-9

R B L

O T

DESIGN STRUCTURE

long and tries to recap the important information and
re-enter it so that only the end result is printed out. The
design structure of ICECAP makes this tedious and
error-prone re-entry process totally unnecessary. ICECAP
allows the user to review all output on the screen, Once
satisfied with the results, the user can than cause the
output to be written to a file which can be neatly printed
out in as many copies as desired after the design session.
The modularity of the ICECAP design structure makes this

selective printing possible.

3.6.2 No Need For User's Manual - The fact that the design
structure of ICECAP allows on-line assistance to be
developed for a command at the same time that the ICECAP
command is implemented in the language obviates the need for
a user's manual. The user's manual is actually provided on
line. This makes the environment more pleasant for the user
because there usually is very little room at the terminal
station to accommodate user's manuals, especially when the
user needs to have textbooks and worksheets there for the

specific design problem at hand.

3.6.3 Files Storage - One of the most important features
needed for a pleasant user environment is the ability to
store files so that a control system design can be continued
at another session, To re-enter all previous data in order

to continue a design session is a very tedious and -

~

3-10

e e S NN RO e AR N 55 0 1

NP

DESIGN STRUCTURE

error-prone task., ICECAP has been structured to take
advantage of the files management system of the VAX 11/780
and to allow the user to store current designs and several
previous designs so that any design session may be continued

at any time,
3.7 SUMMARY

This chapter has addressed the design requirements and
constraints that have influenced the ICECAP design
structure. In particular, the role of the computer
environment and the requirement for a "friendly"™ user
interface in establishing that structure has been addressed.
The major steps taken in applying top-down structured

analysis to derive the design structure were described.

3-11

Y. PO 0 L PR e, . £ 70+

R

tia-

CHAPTER 4

IMPLEMENTATION

4.1 INTRODUCTION

This chapter describes the details of the overall
architecture of ICECAP. This description is from the
viewpoint of how the program flows in order to process and
execute any user initiated ICECAP command. The details of
how the program flows for all possible ICECAP commands are
too voluminous and cannot be treated in this chapter. That
amount of detail is 1left to the appendices. However,
examples of a specific command are given in order to show

the architecture for the general case.
4,2 SYSTEM DESIGN

ICECAP is designed using top-down structured
programming techniques [37, 64, 66]. A gross flow chart is

provided in Pigure 4-1, The major activities are as

follows:

IMPLEMENTATION

PO T ——

‘ BEGIN ’

INITIALIZE

FORMULATE
COMMAND

l

INTERPRET
AND TRANSLATE
COMMAND

e

N EXECUTE
STOP? —= COMMAND

Y

‘g ' O

Figure 4-1, ICECAP Gross Flow Chart !

4-2

IMPLEMENTATION

4.2.1 Program Initialization - This activity includes the
normal things that are done to initialize any program, i.e.,
clear the screen, display the initial title slide, set
certain values to zero and set variables and flags to their

initial values.

4.2.2 Command Formulation - This activity begins with a
prompt in the form of a menu-~like header that shows all of
the valid command words that can be used to start a valid
ICECAP command string. As words are selected, further
prompting is available to indicate the valid choices for the
next word in the command string. If the next command word
is known, the user is not bothered by the prompting, This

process continues until a valid command string is formed.

4.2.3 Command Interpretation And Translation - Once a valid
command string is formed its meaning must be interpreted so
that it may be translated for use by the FORTRAN modules

that carry out the actual command.

4.2.4 Command Execution - Except for changes to improve
performance, the execution of the commands is done basically
in the same manner as is now done in VAXTOTAL. The details
of the various VAXTOTAL commands have been documented ir.
previous theses [38, 41) and user manuals {30, 39) and will

not be repeated here,

IMPLEMENTATION

4.2,5 Return Of Control - Control is then returned to the
main program after the command has been executed. A new
command can then be entered, interpreted, translated, and
executed, This process repeats until the user indicates

that the user has finished by entering the command "STOP".
4.3 ALGORITHMS

The algorithms associated with the activities

associated above are now described.

4.3.,1 Program Initialization -~ The initialization activity
consists of clearing the screen, setting the terminal
parameters, displaying an initial screen showing copyright
information and program identification information, and

initializing values.

4.3.1.1 Clearing The Screen - This process is carried out
by the Pascal procedure called CLEAR which is a

terminal-unique message that is written to the terminal.

4.,3.1.2 Setting The Terminal Parameters - This process is
carried out by the main program by sending a terminal-unique
message to the terminal to put the screen into the inverse
video mode. The inverse video is the mode of dark letters
on a light background. The use of inverse video is strictly

a matter of taste. It provides a brighter screen which is

more pleasing to the eye. The wuser can override this

B e R

L e et T Ve

Gida i W A A A

IMPLEMENTATION

setting by using the terminal set-up keys.

4.3.1.3 1Initial Screen Display -~ This process is carried
out by the Pascal procedure TITLE_SLIDE which, among other
things, puts the terminal into the graphics mode, paints the
word ICECAP onto the screen, draws a box around the word
ICECAP, displays the authors, and shows the copyright
information, Effort was put into designing the title slide
in this manner in order to emphasize that the user is
entering into the program and to give the program a
professional appearance., It is important that the users
perceive that they are using a professional program, if they

are to have confidence in the results,

4.3.1.4 1Initialization - Initialization of the Pascal
portion of the program is carried out by the main program,
Initialization of the FORTRAN portion of the program is
carried out by the new FORTRAN module called TOTINI which
sets various control flags as well as setting variables to

their inital values.

4.3.2 Command Formulation - The command formulation
activity consists of prompting the user on valid initial
command words, reading the command words, checking the

validity of the command words, and prompting the user on

valid choices for the next word in the command,

IMPLEMENTATION

4.3.2.1 1Initial Command Word Prompt - The prompting
activity is done by the Pascal subprogram HELP_PROMPT. This
subprogram prints a header which lists all of the available
initial command words highlighted with light letters on a
dark background in contrast to the remaining text which is
dark letters on a 1light background. Because of the
highlighting the user is able to learn the initial command
words more quickly and therefore can eventually disable this
prompting feature., Highlighting is done by terminal-unique
commands sent to the terminal as a result of calls to

subprograms HIGHLIGHT and NOHIGHLIGHT.

4.3.2.2 Reading The Command Words - The command word
reading and collecting is done by the Pascal subprogram
READCOM. Reference Figure 4-2, READCOM displays the ICECAP
prompt (ICECAP>) as a signal for the user to begin
entering a command. Unnecessary blanks are trimmed by the
Pascal subprogram TRIM and the command word(s) are put in
uppercase by the VAX Library Routine named STR$UPCASE. This
makes the later parsing of the commands simpler yet allows
the user to enter commands in lower, upper, or mixed case.
The reading process continues until the user issues a
carriage return signalling to the program that the command
is complete or that a prompt is needed for the next command
word., A flag with the variable name RESOLVED is used to

indicate wvhether or not the command string is a complete

4-6

IMPLEMENTATION Y

RESOLVED
TRUE?

N |

CLEAR
BUFFER

T T AAAL Ly e b U W RTT ANt 1 Se b)an by ¢

DISPLAY
"ICECAP>"

»4 DISPLAY
BUFFER

1

e,

CHANGE TO !
UPPERCASE

STRIP OUT
EXCESSIVE
BLANKS

@

Pigure 4-2, Flow Chart for Procedure READCOM

g e e e

4-7

IMPLEMENTATION

one., If RESOLVED is false, procedure READCOM reads the next
command word(s) as a continuation of the previously entered
command word(s). If RESOLVED is true, READCOM reads the

next command word(s) as a new command.

4.3.2.3 Validity Checking Algorithm - Validity checking is

dorie in two ways as follows:

4.3.2.3.1 First, each command word is checked against the
ICECAP dictionary of valid command words. Reference Figure
4-3,. This is done by the Pascal subprogram DICTIONARY, If
any word used in the command string is not a valid ICECAP
command word the user is so notified, Abbreviations are
allowed and also appear in the dictionary. If a valid
abbreviation is used in a command string, the subprogram
DICTIONARY substitutes the expanded version of the word for
the abbreviation. For example, if the command word that the
user enters is AMA, then procedure DICTIONARY changes that
ccmmand word to AMAT. This makes the parsing simpler later
and teaches the usger the full spelling of the ICECAP command
words. If all words in the command string are valid command

words, the second phase of the validity checking begins.

4.3.2.3.2 The first command word in the command string is
checked to see if it is a valid initial command word. This
is done by the Pascal subprogram INTERPRET, If the first

command word the user has entered is not a valid initial

4-8

P STt =S gy

A

IMPL

EMENTATION

1

ALLMATCH = TRUE

NOTE

CW = COMMANDWORD

MATCH = TRUE
CW = AMAT

MATCH = FALSE

ALLMATCH = FALSE

PRINT ERROR MESSAGE

i

_—y

N

&

Figure 4-3. Plow Chart for

Procedure DICTIONARY

IMPLEMENTATION

command word the user is so notified and the ICECAP prompt
is displayed so that another command may be entered.
Depending on what the initial command word is, the
subprogram INTERPRET branches out in a tree-like fashion to
other Pascal subprograms to look for valid objects of the
initial command word and notifies the user if an invalid
object has been encountered. This branching out and
validity checking continues until the command string is

finished and the command is ready for execution,

4.3.2,3.3 Prompting - Prompting is given when the program
senses that the user needs information on what the next word
in the command string can be. The user signals the need for
this information by issuing a carriage return anywhere in
the command formulation process. Upon receiving this signal
the program displays the valid choices for the next command
word. This is done in a tree-like manner wherein each
Pascal subprogram displays the choices that are appropriate
for the command that has been partially formulated.
Reference Figure 4.4. For example, in formulating the
command DEFINE GTF POLY, the Pascal subprogram DEFINE calls
Pascal subprogram DEFINE_PROMPT in order to prompt the valid
choices for the second command word. Once the user has
selected the second command word, in this case GTF, then the
Pascal subprogram DEFINE calls Pascal subprogram DEFINE_TF

which then prompts the user to choose the third command

4-10

e A oy -

L e R R TR 7T S

IMPLEMENTATION

word, in this case POLY,

4.,3.2.4 Command Interpretation And Translation - Command
Interpretation is made via the program flow. Reference
Figure 4-4, The choice of certain command words that make
up the command string cause certain If-Then-Else statements
to execute, If-Then-Else statements are used to direct the
flow because the more convenient case statements do not work
for strings in Pascal. (However, for clarity, the decisions
in Figure 4-4 are shown with case statements.) The
interpretation of the entire command comes from having
executed certain combinations of If-Then-Else statements,
Once the interpretation is known then the translation is
made directly to option numbers that the current version of
VAXTOTAL normally receives directly from the user. This
translation is passed to the FORTRAN modules as if they were
coming directly from the user as coded VAXTOTAL option
numbers or VAXTOTAL commands. How this is done is described

in the next section,

4.4 PASCAL/FORTRAN INTERFACE

The main Pascal/FORTRAN interface is the FORTRAN module
TOTICE (named for TOTAL and ICECAP). The Pascal portion of
ICECAP interprets the user commands and translates them

either to VAXTOTAL option numbers or to VAXTOTAL commands,

4-11

T i g A Ay £

SO PIRE R ot 1O &

IMPLEMENTATION

CASE FIRST COMMANDWORD (CW)

COPY DEFINE o o UPDATE ELSE
. CASE . ERROR
. SECOND . MESSAGE
. Cw .
A
GTF o o o CLTF AMAT o o ELSE
CASE . . . ERROR
THIRD . . . MESSAGE
Cw L 4 . L]
FACT POLY ELSE
EXECUTE EXECUTE ERROR
COMMAND COMMAND MESSAGE
Figure 4-4. Flov Chart for Procedure INTERPRET

4-12

o

S e ey - v

ey

s

IMPLEMENTATION

4.4.1 Option Numbers - If the command translates to an
option number, then the option number is passed to TOTICE
via the first element in the argqument 1list (OPTIONNUMBER).
If this is the case, the second element in the argument list
is ignored. The FORTRAN modules then react to this option
number just as if the number had been entered by the user

using VAXTOTAL,

4.4.2 Commands - If the command translates to a VAXTOTAL
command, then option number zero is passed to TOTICE via the
first element in the argument list (OPTIONNUMBER) to signal
the fact that the second element in the argument list (LINE)
is a command. This command is then passed to the FORTRAN
modules to be processed as if the command had been entered

by the user using VAXTOTAL.
4,5 DESIGN DOCUMENTATION

The design documentation has been logically arranged in
the appendices of this thesis for the convenience of the
reader and to facilitate program maintenance, Program
maintenance refers to correcting 1logical errors in the
existing program as well as to continuing program
development, The appendices which contain this design
information are as follows:

o Appendix A, Structure Charts
o Appendix B, Data Dictionary

4-13

IMPLEMENTATION

Appendix E, Command Language Definition
Appendix F, FORTRAN Module Descriptions
Appendix G, ICECAP Pascal Source Code
Appendix H, ICECAP FORTRAN Source Code

0000

4.6 SUMMARY

The design implementation and rationale for the
implementation decisions of ICECAP have just been presented.
Details on how the program is initialized and on how
commands are formulated, translated and executed have been
presented., Details on specific commands are out of scope of
this chapter because the heart of the design implementation
is in the general command processing capability. This
chapter would have been too voluminous if it had treated
every possible ICECAP command., The details of each specific
command are shown in Appendix A, Structure Charts and

Appendix E, Command Language Definition.,

4
3
4
{
!

CHAPTER 5
TESTING

5.1 INTRODUCTION

This chapter covers the entire program for testing
ICECAP, It addresses the testing requirements, the plan for
conducting the testing, the results of the testing and all

of the documentation generated as a result of the testing,
5.2 TESTING REQUIREMENTS

The requirements for testing ICECAP as stated in
Chapter 2 are repeated here for convenience and

completeness.

5.2.1 PFunctional Requirements - The functional requirements
that have been implemented in ICECAP shall be tested using
known test cases, such as the sample problems in the student
handout on the use of TOTAL [30]. This handout contains
several printouts of actual interactive sessions. It shall
be determined whether or not ICECAP provides results
consistent with (or better than) the results that TOTAL

5-1

R

e et R, e e R

TESTING
and/or VAXTOTAL provide for these problems.

5.2.2 Program Flow - ICECAP shall be run to determine
whether or not the program flows properly. The program must
transition to valid known states. The program must not hang
in an endless loop. The ability to exit gracefully from the

program must be demonstrated.

5.2.3 On-line Assistance - The ability of the intended user
to formulate the commands necessary to design and analyze a
control system with the on-line assistance that is provided

must be demonstrated.

5.2.4 Output - The ability to document a control system
design and analysis selectively and conveniently must be

demonstrated.
5.3 TESTING PLAN

The following plan shall be used in testing the

previously described requirements,

5.3.1 Informal Testing -~ All program modules shall be
thoroughly tested before they are integrated into the main
program. As each module is integrated into the main
program, the program shall be thoroughly tested to assure
that the added function works properly and that no program
degradation has taken place. No formal documentation is

required for informal testing.

5-~2

e a1

e o ot .

o e A gt e e . - s o s -

TESTING

5.3.2 Formal Testing - Formal testing shall be carried out
for a representative sample of the entire program. The
following paragraphs constitute this formal testing. The
samples shall be chosen to demonstrate formally the ability
of the program to meet the requirements defined in Chapter

2,

5.3.2.1 Functional Requirements - The following functional
requirements shall be tested using relevant test cases from
the student handout [30]. Results shall be compared with
the results documented in the student handout to see if they
are within reasonable tolerances allowed for the differences
in the wordlengths of the Cyber (wordlength = 60 bits) and
the VAX 11/780 (wordlength = 32 bits). In accordance with
Chapter 2, a tolerance of 0,001 shall be considered
reasonable, Results that are out of tolerance shall be
documented and explained if possible, The functional

requirements to be tested are as follows:

o The use of the DEFINE command to input one or more
of the following: GTF, HTF, OLTF, CLTF using both

the polynomial form and the factored form.

0 The use of the FORM command to form one or more of

the following:

OLTF using GTF and HTF
CLTF using OLTF
CLTF using GTF and RTF

000

OO i AR AN TP e -

it

i YR MB O < i, Bl Sam AN,

T o Yo P s .

TESTING

0 The use of the PRINT LOCUS AUTOSCALE command to
demonstrate the autoscaling and proper plotting of

the Root Locus,

0 The use of the PRINT SPECS command to demonstrate
the ability to analyze the specifications of the

control system properly using a step input,

5.3.2.2 Program Flow - A representative subset of all
possible ICECAP commands shall be tested to assure that the
program flows properly and does not hang in an endless loop.
The following commands shall form the minimum subset:

DEFINE AMAT

COPY AMAT BMAT
PRINT BMAT

DEFINE GTF FACT
DEFINE HTF POLY

FORM OLTF

PRINT OLTF

FORM CLTF USING OLTF
PRINT LOCUS AUTOSCALE
PRINT LOCUS MAGNIFY
HELP SYSTEM

HELP INITIAL

HELP COPY

DISPLAY SPECS

TURN MAINMENU ON
TURN MAINMENU OFF
UPDATE

RECOVER

STOP

0000000000000 00000O0

[

TESTING

5.3.2.3 On-Line Assistance - This requirement shall be

tested in two ways:

5.3.2.3.1 By the use of the HELP command, The information
provided shall be reviewed for clarity and usefulness to the
user, particularly the novice user,

0 HELP INITIAL

0 HELP SYSTEM
o HELP COPY

5.3.2.3.2 By typing commands one word at a time followed by
a carriage return to determine whether all information is
provided to enable the user to forimulate an entire ICECAP
command, The following words shall be used as starting
points for formulating these commands:

DEFINE
HELP
COoPY
FORM
DISPLAY
PRINT
TURN

0000000

5.3.2.4 Output - The ability of the system to provide
printouts to document a control system design adequately
shall be tested. The results of running the tests on the
functional requirements defined above <can be used.

Printouts shall be produced for the following items:

o0 GTF
0 HTF
o OLTF

TS E——

TESTING

o CLTF
0 a Root Locus
o a set of specifications

5.4 TESTING RESULTS

The tests of the previous sections were run, Both

formal and informal testing were conducted.

5.4.1 Informal Testing - Day to day use of the program as
well as thorough testing of each module as it was developed
and integrated constituted the informal testing., All of the
new and revised code was exercised. Printouts were made and
results were compared against hand calculations and against
runs of TOTAL and VAXTOTAL, All problem areas uncovered
during this testing were either resolved or documented in
Appendix € as problem reports, Note that Appendix C also
documents problems with TOTAL and VAXTOTAL.

5.4.2 Formal Testing - Appendix J contains the testing
documentation generated as a result of the formal testing
conducted in accordance with the test plan, This appendix
contains copies of =screen displays as well as copies of

printed output generated when ICECAP was executed, All

testing results are satisfactory.

;
»
§
i

IR

p—

TESTING

5.5 SUMMARY

The requirements for testing ICECAP have been restated
from Chapter 2. The plan for carrying out the various tests
has been provided and the testing results and anomolies have

been documented, Information on where to f£ind the various

testing related documents has been provided.

e e N Ut i v e g et L

CHAPTER 6
CONCLUSIONS AND RECOMMENDATIONS

6.1 INTRODUCTION

This chapter discusses the conclusions reached as a
result of having done this thesis effort. The chapter also
makes recommendations regarding the continuation of the

effort, deiasnrng features that should be implemented.

6.2 CONCLUSIONS
The following conclusions were reached:
6.2.1 It Is Feasible To Interface Pascal With FORTRAN

It is indeed feasible and practical to interface a
Pascal Program to FORTRAN modules. The ICECAP main program
is written in Pascal and has several modules written in
rascal. FORTRAN subroutines are called by Pascal
procedures., There are defined ways on how to call a FORTRAN
subroutine from a Pascal program. These ways are described

in the VAX/VMS manuals [22, 23, 24, 25].

6-1

i R e e T

i

CONCLUSIONS AND RECOMMENDATIONS

6.2.2 Modular Structure Is Workable For ICECAP

The use of a highly structured language does allow one
to define an overall structure and fill in the detailed
functions at a later time., This technique does allow one to
have a program that functions properly for those features
that one has implemented. Thus several people can work on
separate portions of the ICECAP program either separately or
together and even at different periods of time during the

program development cycle,

6.2.3 CRT Terminals Are Superior To Printing Terminals

ICECAP was tested using several students and
instructors as subjects., Without exception, those subjects
who had previously used printing terminals for TOTAL felt
that the CRT terminal interactive sessions were superior to
the printing terminal interactive sessions, especially since
printouts of their choosing could be made available at any
time during the sessions. The fast response time of the CRT
terminal made the session much more pleasant and productive,
More iterations of a design problem can be done per unit
time wusing the CRT than can be done using a printing

terminal,

AP0 s, NG bt

T sy

eeq—

T

CONCLUSIONS AND RECOMMENDATIONS

6.2.4 ICECAP On-Line Help Is Effective

vn-line help, if properly implemented, is more effctive
than help that must be obtained from manuals, The fact that
there is one fewer book to manage at the terminal is a
practical consideration that enhances the productivity of
any session, especially where there is very limited terminal

space, such as in a school environment,

6.3 RECOMMENDATIONS

The followir.g recommendations are made:

6.3.1 Thesis Effort Be Continued

This thesis effort should be continued. This is a very
worthwhile effort. The need for a tool that does complex
control system design and analysis has already Dbeen
established., The need for a tool that is easy and pleasant
to use 1is just now becoming appreciated, since the
importance of human engineering is becoming more and more

recognized,

6.3.2 More Continuous Time Functions Be Implemented

Although this thesis effort concentrated on
implementing the continuous time functions first, not all of
these functions were implemented. The functions yet to be

implemented include the following:

6-3

TR LY AT (T4 e BN NS, NPT . ¢

CONCLUSIONS AND RECOMMENDATIONS

rd
ot 4

o Tabular listing of F(t) (cf. TOTAL Option 31)
o Plot F(t) at user's terminal (cf. TOTAL Option 32)
o Printing the time equation (cf. TOTAL Option 35)

o Partial fraction expansion (cf. TOTAL Option 36)

e e ian

0 Selection of step, ramp, impulse, pulse or sine
input (cf. TOTAL Option 39)

6.3.3 More Root Locus Functions Be Implemented

This thesis effort concentrated on plotting the root
locus at the user's terminal and in a print file, adding the
automatic scaling feature, Other root 1locus functions

should be added as follows: -

0 Zoom feature. With this feature the user would
have to enter only a center point of interest (an X
coordinate and a Y coordinate) and a positive
distance. With that information the program would
calculate the borders and display the root 1locus
using those borders.

0 Root locus with a gain of interest (cf. TOTAL
Option 42)

0 Root locus with a damping ratio of interest (cf.
TOTAL Option 43)

o List n points on a branch of interest (cf, TOTAL
Option 44)

6.3.4 Other Functional Capability Be Implemented

Other capabilities which should be implemented are as

follows:

(- o Discrete time functions

NS —e :

=AY

CONCLUSIONS AND RECOMMENDATIONS

o Matrix manipulation functions

o Polynomial manipulation functions

0 Robustness analyses
0 Return-difference transfer functions
0 Singular value decomposition

0 Plots of max/min singular value vs. frequency

6.3.5 Stochastic Functions Be Defined

Since there is no Stochastic capability either in
ICECAP or TOTAL at this time, the desirability for and an
approach for adding this capability should be studied. The
Stochastic functions recommended for implementation should
be very carefully and unambiguously defined. 1Initially, the

study can be limited to the following:

o Time invariant systems
o Stationary noises
o Constant-gain filters

o Constant-gain controllers

These areas of study would lead to an approach for defining
the following capabilities:
0 Design and analysis of constant—-gain LQG
controllers

o Design and analysis of constant-gain Kalman filters

0 Generation of power spectral density (PSD) plots of
any signal of interest

e <=y

ey e

AT

CONCLUSIONS AND RECOMMENDATIONS

o Generation of a plot of the autocorrelation kernel
as the inverse Fourier transform of that PSD

6.3.6 Teach Modules Be Developed

An approach for developing the teach modules should be
carefully studied. The lesson objectives shculd be outlined
and lesson plans should be developed before any attempt is

made to implement a teaching module.
6.3.7 Data Dictionary For TOTAL Be Established

Since many of the modules of TOTAL will be the basis
for ICECAP, it is important that the baseline of TOTAL be
better understood. The variable names in TOTAL are not at
all descriptive. It oftentimes takes days, even weeks, to
understand some of the modules., Once the effort has been
expended in understanding the workings of these modules,
that knowledge should be documented so that others do not
have to expend the same effort. One of the best ways to
document this corporate memory is through a data dictionary
for TOTAL, wherein all of the variables and subroutines are
explained., The dictionary should be sent to all those who
are involved in changing TOTAL for contributions. There
should be an OPR (Office of Primary Responsibility)
established to collect the contributions and to publish the

updated dictionary periodically.

i
)
i 4
H
i

PN

CONCLUSIONS AND RECOMMENDATIONS
6.3.8 ICECAP Be Rehosted

ICECAP should be rehosted on the AFIT VAX which
operates under the UNIX operating system., This system is
intended for student class use and can accommodate a larger
student load than can the AFIT VAX in the Digital
Engineering Laboratory which is intended to be wused for
research., Once ICECAP is rehosted, the students and faculty

can use ICECAP instead of Cyber TOTAL.

6.3.9 Plot Capability Be Enabled

Since it has been determined that the printer in the
AFIT Digital Engineering Laboratory now has a working
graphics capability, an effort should be made to implement a

plotting capability in ICECAP.

6.4 SUMMARY

Several conclusions were reached as a result of this
thesis effort, This chapter has detailed these conclusions.
This chapter also details several recommendations regarding
the continuation of the ICECAP project. Recommendations on
what functional capabilities ought to be implemented in
ICECAP have been included.

S i

e)

BIBLIOGRAPHY

1. Astrom, K. J. and H. Elmquist. “Perspective on
Interactive Software for Computer Aided Modeling and Design
of Control Systems,"” Proceedings of fhe 20th IEEE

on Decision and Control, December 198l.

2. Balchen, Jens G. and Arne Tysso. "Application of CAD in
Modeling, Identification and Control of Industrial and Large
Scale, Nontechnical Processes,"™ Proceedings of the 20th IEEE
Conference on Decision and Control, December 1981.

3. Balfour, A, and D. H, Marwick. Programming in Standard
FORTRAN 77. New York, New York: North-Holland, Inc., 1979,

4. Brubaker, Thomas A. Development of Improved Design
Methods for Digital Filtering Systems. AFAL-TR-77-207.
Fort Collins, Colorado: Colorado State University, 1
November 1977.

5. Colgate, James A, INTERAC - An Interactive Software
Package for Direct Digital Control Design. MS Thesis,

Wright~Patterson Air Force Base, Ohio: Air Force Institute
of Technology, December 1977.

6. D'Azzo, John J. and Constantine H. Houpis. Linear
Control System Analysis and Design: Conventional and
Modern, Second Edition, New York, New York: McGraw-Hill
Book Company, 1981.

7. Dakin, Karl J, and David A. Higgins. "Fingerprinting a
Program, "™ Datamation, April 1982.

8. Davis, Richard M. Thesis Projects in Science and
Engineering. New York, New York: St. Martin's Press,
1980,

Bib-1

S S it

BIBLIOGRAPHY

9. Didaleusky, Dennis G, J. Multi-Rate Digital Control
Systems with Simulation Applications, Volume III: Source
Listings., AFWAL-TR-80-3101. Wright-Patterson Air Force
Base, Ohio: Flight Dynamics Laboratory, September 1980.

10. Digital Equipment Corporation., EDT Editor Manual.
AA-J726A-TC, Maynard, Massachussetts: Digital Equipment
Corporation, October 1980.

11, Digital Equipment Corporation. Engineering
Referral Catalog, Sixth Edition. Maynard,
Massachusetts: Digital Equipment Corporation, 1980.

12, Digital Equipment Corporation. YAX Systems and Options
Summary. Maynard, Massachussetts: Digital Equipment
Corporation, April 1981.

13, Digital Equipment Corporation. VAX/VMS Command

Language User's Guide. AA-D023C-TE. Maynard,
Massachusetts: Digital Equipment Corporation, May 1982,

14, Digital Equipment Corporation., VAX/VMS Guide to Using
Command Procedures. AA-H782B-TE. Maynard, Massachusetts:
Digital Equipment Corporation, May 1982,

15. Digital Equipment Corporation. YAX/VMS Primer.
Maynard, Massachusetts: Digital Equipment Corporation,
1978.

16. Digital Equipment Corporation., VAX/VMS Software]
. Maynard, Massachusetts: Digital Equipment
Corporation, 1978,

17. Digital Equipment Corporation. VAX/VMS Summary ;
Description. Maynard, Massachusetts: Digital Equipment ‘
Corporation, 1978. i

18, Digital Equipment Corporation. YAX-11l DIGITAL Standard v
Runoff (DSR) User's Guide. AA~J268B-TK. Maynard,
Massachusetts: Digital Equipment Corporation, May 1982.

19. Digital Equipment Corporation. YAX-1l FORTRAN
Reference Manual. AA-D034C-TE. Maynard, Massachusetts:
Digital Equipment Corporation, April 1982,

<0. Digital Equipment Corporation. YAX-11 FORTRAN
Reference Manual. AA-D034B-TE. Maynard, Massachusetts:
Digital Equipment Corporation, April 1980.

. b

BIBLIOGRAPHY

21, Digital Equipment Corporation, VAX-11 FORTRAN User's
Guide. AA-D035C-TE. Maynard, Massachusetts: Digital
Equipment Corporation, April 1982,

22. Digital Equipment Corporation, YAX-1l Pascal
Reference Manual. AA-H484B-TE. Maynard, Massachusetts:
Digital Equipment Corporation, March 1981,

23, Digital Equipment Corporation. VAX-11 Pascal Language
Reference Manual. Maynard, Massachusetts: Digital
Equipment Corporation, November 1979.

24, Digital Equipment Corporation. VAX-1]l Pascal User's
Guide. AA-H485B~TE. Maynard, Massachusetts: Digital
Equipment Corporation, March 198l1.

25, Digital Equipment Corporation. YVAX-11 Pascal User's
Guide. Maynard, Massachusetts: Digital Equipment
Corporation, November 1979.

26, Digital Equipment Corporation. VAX-11 Run-Time Library
User's Guide. AA-L824A~TE., Maynard, Massachusetts:
Digital Equipment Corporation, April 1982.

27. Digital Equipment Corporation. YAX-11 Run-Time Li
Reference Manual. AA-D036C-TE. Maynard, Massachusetts:
Digital Equipment Corporation, April 1982,

28, Digital Equipment Corporation. VAX-1l
Manual. AA-D026C-TE., Maynard,
Massachusetts: Digital Equipment Corporation, January 1979.

29, Digital Equipment Corporation. ¥YT-100 User Guide.
Second Edition, Maynard, Massachusetts: Digital Equipment
Corporation, January 1979,

30. Fontana, Robert E. Sample TOTAL Printouts.
Unpublished Student Handouts for Course EE 562.
Wright-Patterson Air Force Base, Ohio: Air Force Institute
of Technology.

31. Barvey, C. A, and J., E. Wall, "Phases in the
Development of Control System Design Software,” Proceedings

of the 20th IEEE Conference on Decision and Control,
December 1981,

32, Herget, C., J. and Thomas P. Weis.

Linear Systems
Program User's Manual. UCID-30184. Livermore,
California: Lawrence Livermore Laboratory, October 1980.

Bib-3

BIBLIOGRAPHY

33, Hernandez, Enrique G. Apn Interactive Computational
Aerodvnamics Analysis Program. MS Thesis, Wright-Patterson
Air Force Base, Ohio: Air Force Institute of Technology,
December 1980,

34, Holt, R C, and J. N, P, Hume. Programming Standard
Pascal. Reston, Virginia: Reston Publishing Company, Inc.,
1980,

35. Houpis, C. H. and Gary B. Lamont. Lecture Notes on
Digital

Control . .
Wright-Patterson Air Force Base, Ohio: Air Force Institute
of Technology, August 1980,

36. Kennedy, Thomas A. The Design of Digital Controllers
mmmwmmw
Assignment and the Development of an Inter—-Active

Desian Program. MS Thesis, erght-Patterson Air Force
Base, Ohio: Air Force Institute of Technology, March 1979.

37. FKoffman, Elliot B. Problem Solving and Structured
Programming in Pascal. Reading, Massachusetts:
Addlson-Wesley Publishing Company, 1981.

38. Larimer, Stanley J. An Interactive Computer—-Aided
Desian Program for Digital and Continuous Control System
Analysis and Synthesis. MS Thesis. Wright-Patterson Air
Force Base, Ohio: Air Force Institute of Technology, March
1978.

39. Larimer, Stanley J. TOTAL User's Manual (CAD).
Wright-Patterson Air Force Base, Ohio: Air Force Institute
of Technology, June 1981.

40, Larimer, Stanley J. and Holly L. Emrick. "On the
Possibility of Common Control System Design Software for
Government, Education, and Industry," Unpublished.

41, Logan, Glen T. Development of an Interactive Computer
Aided Design Program for Digital and Continuous Control
System Analysis and is. MS Thesis. Wright-Patterson
Air Force Base, Ohio: Air Force Institute of Technology,
March 1982,

42. Mancini, Anthony J. Computer Aided Control
Design Using Freqguency Damain . Monterey,
California: Naval Postgraduate School, June 1976.

43. Maybeck, Peter S. Stochastic Models, Estimation and
Control. Volume 1. New York, New York: Academic Press,
1979,

i
i
|
|
|

e

BIBLIOGRAPHY

44. Maybeck, Peter S. Stochastic Models, Estimation and
Control. Volume 2, New York, New York: Academic Press,
1982,

45. Maybeck, Peter S. Stochastic Models, Estimation and
Control. Volume 3, New York, New York: Academic Press,
1982,

46. McQuay, William K. A Comparative Guide £o NOS/BE and
VAX-11/780 Command Languages. Wright-Patterson Air Force
Base, Ohio: Avionics Laboratory, Air Force Wright
Aeronautical Laboratories, October 1980,

47. Moynihan, John A. "What Users Want," Datamation, April
1982,

48. Munro, Neil. "Illustration of the Applicability of

Computer Aided Design Packages," Proceedings of the 20th
IEEE Conference on Decision and Control, December 1981.

49. Musick, Stanton H, SOFE: A Generalized Digital
Simulation for Optimal Filter Evaluation User's Manual,
AFWAL-TR-80-1108. Wright-Patterson Air Force Base, Ohio:
Avionics Laboratory, October 1980.

5¢. Musick, Stanton H. SOFEPL:; A Plotting Postprocessor
for 'SOFE’' User's Manual, AFWAL-~TR-80-1109.
Wright-Patterson Air Force Base, Ohio: Avionics Laboratory,
November 1981.

51. Nadler, Gerald and Ali Seireg. "Professional
Engineering Education in the Classroom," Engineering
Education, May 1982.

52. O'Brien, Frederick L. A Consolidated Computer Program
for Control System Design. MS Thesis. Wright-Patterson Air
Force Base, Ohio: Air Force Institute of Technology,
December 1976.

53, Polak, E. "Interactive Software for
Computer-Aided-Design of Control Systems via Optimization,"”

Proceedings of the 20th IEEE Conference on Decision and
control, December 198l.

54. Prather, Ronald E. Problem Solving Principlesg:
Programming with Pascal. Englewood Cliffs, New Jersey:
Prentice-~Hall, Inc., 1982,

55, Shneiderman, Ben. "How to Design with the User in
Mind," Datamation, April 1982,

Bib-5

=

e e v e e

ke e s A

BIBLIOGRAPHY

56. Simpson, Henry. "A Human-PFactors Style Guide for
Program Design," BYTE, April 1982,

57. Smith, B, T. and T. R. G. Green. Human Interaction
with Computers. New York, New York: Academic Press, 1980,

58. Spielman, Stephen Christie., Freguency Methods in

dided Design of Control Systems. MS Thesis.
Urbana, Illinois: University of Illinois, Urbana, December
1976.

59. Strang, Gilbert. Linear Analysis and 1ts Applictions,
(Second Edition). New York, New York: Academic Press,
1980.

60. Tiberghien, Jacques. The Pascal Handbook. Berkeley,
California: Sybex, 1981,

61. Tausworthe, Robert C. Standardized Development of
Computer Software. Englewood Cliffs, New Jersey:
Prentice-Hall, 1979.

62. Vines, Larry Paul. Computer Aided Design of Systems.
Monterey, California: Naval Postgraduate School, June 197S.

63. Walker, Robert, Charles Gregory, Jr., and Sunil Shah.
"MATRIXx: A Data Analysis, System Identification Control

Design and Simulation Program,” Abstract of paper awaiting
publication.

64, Weinberg, Victor. Structured Analysis. New York, New
York: Yourdon Press, 1979.

65. Whitbeck, Richard F. and Dennis G. J. Didaleusky.
Multi-Rate Control Systems with Simulation
¢+ Volume I: Technical Report AFWAL-~TR-80-3101.

Wright-Patterson Air Force Base, Ohio: Flight Dynamics
Laboratory, September 1980.

66. Yourdon, Edward and Larry L. Constantine. Structured

Resign: Fundamentals of a Riscipline of Computer
and Design. New York, New York: Yourdon Press,
1978,

TN RS TSI e Sy SRRSO, S

Bib-6

APPENDIX A

STRUCTURE CHARTS

B e ™ ™ T e e

A.1 INTRODUCTION

This appendix contains the Structure Charts that show
all of the calls of the ICECAP main program through and
including the subprogram (TOTICE) that interfaces with the
VAXTOTAL modules, The VAXTOTAL modules have already been
documented in previous works [38, 41] and therefcre are not
repeated here., This appendix details the standards which
were used in developing the structure charts, Appendix B
explains the purpose of each module shown in the structure
charts of Appendix A.

A.2 STRUCTURE CHART STANDARDS

FPor the sake of clarity and consistency the following
standards were used in developing the structure charts
contained in this appendix:

A.2.1 Only one level of depth is
chart.

portrayed on a given

A.2,2 Open arrows show data flow.

A.2.,3 Closed arrows show control that affects program flow,

STRUCTURE CHARTS
A.2.4 Diagrams are in alphabetical order.

A.2.5 The extra horizontal line on certain boxes indicates
that there are lower level diagrams for those boxes,

A.2.6 The subordinate boxes in each diagram are in the
order in which the subprograms are first called. Each
subprogram is shown only once even though it may be called
more than once.

A.3 ICECAP MODULE HIERARCHY

The following outline shows the hierarchy of the ICECAP
modules, A change in a level of indentation indicates that
the more deeply indentured module is declared in the 1less
deeply indentured module. For example, Procedure TOTINI is
declared in Progam ICER.

cn

Program ICER
Procedure
Procedure
Procedure
Procedure
Procedure

STRUCTURE CHARTS

TOTINI
TOTICE
FIND_BORDERS
MAGNIFY
SHRINK

Function STRSUPCASE

Procedure
Procedure
Procedure
Procedure
Procedure
Procedure
Procedure

CLEAR
GRAPHICS
NOGRAPHICS
HIGHLIGHT
NOHIGHLIGHT
PAUSE
CURSORRC

Procedure LIBSSET_CURSOR

Procedure
Procedure
Procedure
Procedure
Procedure
Procedure
Procedure
Procedure
Procedure

BOXIT
TITLE_SLIDE
TRIM
HELP_PROMPT
DICTIONARY
READCOM
PRINT_BUFFER
PACK_BUFFER
INTERPRET

Procedure COPY
Procedure DEFINE
Procedure DEFINE_TF
Procedure DEF_TF_PLANE
Procedure DEFINE_PROMPT

Procedure DISPLAY_OR_PRIN
Procedure LOCUS
Procedure LOCUS_AUTOSCALE
Procedure LOCUS_MAGNIFY
Procedure LOCUS_SHRINK
Procedure LOCUS_ZOOM
Procedure FORM
Procedure HELP
Procedure HELP_COPY
Procedure HELP_INITIAL
Procedure HELP_SYSTEM
Procedure TURN
Procedure TURN_X
Procedure TURN_PROMPT

g e

STRUCTURE CHARTS

A.4 LIST OF STRUCTURE CHARTS

BOXIT

COPY

DEFINE
; DEFINE_PROMPT
. DEFINE_TF
| DEF_TF_PLANE
DICTIONARY
DISPLAY_OR_PRINT
FORM ?
HELP ;
HELP_COPY ;
HELP_INITIAL
HELP_PROMPT
HELP_SYSTEM
ICECAP
INTERPRET
LOCUS
LOCUS_AUTOSCALE
LOCUS_MAGNIFY
LOCUS_SHRINK
PAUSE
READCOM
TITLE_SLIDE
TURN
TURN_PROMPT
TURN_X

AR AT P BNz B

|
|
|
|

STRUCTURE CHARTS

B i T D O

LIX0d 21npadoi1d 103 3Ieyd aIn3oniis

e T B A Wi, s NIt 3 T -4 S o g . DA 4R & B PG e s

*1-¥Y 21nbt4g

SOIHAVIOON

oddosyNd

YIOALNI 2 MO¥Y °2
YIOFGINI ¢ MOY °T
SOIHAVYO

-

$:

&LIXod

e e skt SR A O ot A AN o -) RS

Ad0D 21Inpadsoid 103 3aeyd 3in3jodonils °Z-v ainbyga

STRUCTURE CHARTS

LNVLSNOD 2 0 °¥ ONIYLSOIH : ANVWWOOLNO °2
LNVLISNOOD ¢ € °¢€ yaqdnd : JaJINAANVHWOOD °T
LHOI'THOI HON LHDI'THOIH asnvd
it
<
dOILOL y3qand AOVd JvITIO

AR

Xd00

» . ‘. . 5 [S A . i s _ A _ - g

STRUCTURE CHARTS

gNIJFA 2Inpadoid 10J JIieyd) ainioniis

*€-¥ 92i1nbt14

AVYYV QENOVd ¢ ANVWWOOI
YIADILNI 3 YIHHWNONNOILJIO
ONIYLS 3 QIOMANVWWODL

JOILOL

{

DNIYULS 3

N¥370049

asnvd

QIOMANVHWROD °V
QIATOSay °¢
YIOTINI 3 YIINIOdYdddnd °¢
yadddnd : dIJINGANVHWOD °T

WIdL

HE

A-7

ILdWO¥d ZNIJAd

4L aINIJdq

INIJdIa

: m« “H

AR 1 e S EBARTPS S < 23

e

S

Rl ;ni’iiiﬁ‘!.i)!nkvﬁ FPRIOR

*y-v 3inbta

LAWOUd ANIJAId 9Inpaddold 103 33IeYD 9In3dnils

LHOI'THOIHON LHDOITHOIH qva1
&
:
O
: i
: Z
g
g
L)

LdWO¥d ANIJAd

STRUCTURE CHARTS

SIS 3 2 s i Sl

JITANIJAd SInpasolid 103 3Ieyd 2In3dniis

*g~\V ai1nbig

R IR

ONIYLS : (UOMANVWHOOL °S
ONIYLS ! CQUOMANVWWOD °F

NVITO0d : QIATIOSad ‘¢
HIOAILNI ¢ YIINIOdYdddnd °T
¥333Nd ! YIAIINAANVWHOD °T

asnvd

¥aJ4Nd LNIHd

aNv1d 44 Jad

b,

.

WIYL

LHOITHOIHON

LHOI'THOIH

JvaIo

4L INId=Ed

pere

STRUCTURE CHARTS

S s G I i W T ¥ AL A il

Vb -0 AR e AT A R K LT e Sk 2o 1 s ey ot i

INVId 4L 49d 2Inpadoid 103 3iey) a3Injonilys °*9-v 3

nbrd

dsnvd

YIOILNI

: YUIWONNOILAO °T

ITLOL

ANV'Id 4L 430a

. X

A-10

STRUCTURE CHARTS

t g

ANUNOIIDIA 2INp900ld 103 3IRYD 2In3dnI§ °L-V 9InbYJ

asnvd

ONIYLS 3 QUOMANYWWOOL °CT
ONIYLS ¢ QUOMANVWWOD °IT

WIYL

A¥VNOILOIG

A-11

S RN A Vb 1 b csmt btk

INI¥d HO AV'IdSIA 2Inp3001d 103 3Iey) 2In3dNi1zs °g-y 9iInbld

ONIYLS : NOILUNILS3IA °8 JIOIINI: YIHWNNNOILAO °¥
ONIYLS ¢ 3dOYNos °L INVLSNOD 2 T °¢
NV3IT008 ¢ QIATOSTY °9 ONIYLSOIL ¢ ANVWWOOLNO °T
YIOFLNI 3 YILNIOY3addNd °S yFIdNg : dIJINEANVWHWOD °T
¥3Jdnd LNI¥d WIYWL LHOITHOIHON LHOITHOIH SN001
Mm »ﬂ Mw »h 9 “m MH
asnvd dOILOL yaJand Jovd m<ﬂﬂo

b

f,

$

1

ILNIdd 80 AVI1dSId

Ve O S

TP MO P W ot S = =

WH0O3 2Inpeooid 103 3IeyYD 2IN3dNIIS *6-V aanbtda

YAOFLNI ¢ LHOIIH °9 YIDIINI ¢ MOYW °¢t

YIOIINI ¢ HILAIM °S ONIYLSOHIE 3 ANVWWOOI °C

YAOFINI ¢ T0D °¥ YIOIINI ¢ YAAWONNOILJO °T
SOIHIVYOON oYJOSINO SOIHAWYD LIXO0d LHOITHOIHON

b L b s | b &

LHOITHOIH YYdI1o asnvd dDILOL

W0d

STRUCTURE CHARTS

R e e T o T S

dIgH 92anpadoad 103 Jaeyd ain3ldonils

e T R

*0T-¥ 31nbia

LHOITHOIHON

ONIYLS 3 QUOMANVWHOOL °C
ONIYLS ¢ QUOMANVWWOD ‘T

LHDI'THOIH

WIYL

«N

Xd0D> d1dH

asnvd

TVILINI™d'T3H

»H .

WALSAS™ d1dH

d13H

L e e p s

A-14

STRUCTURE CHARTS

* =y

CCrvi i, o9

e T e

Xd0D d'IFH 2anpadoiad 103 3iey) Sianjonials

*IT-¥ aanbtd

gsnvd

HIODIINT
yaadangd

LHOITHDIHON

JALNIOd¥addnd °¢
YIJANGANVHROD ° 1

43a4ngd” LNIAd

f: | 1

LHOI'THOIH

-\ (e

X400 d13H

A-15

STRUCTURE CHARTS

TVILINI dT3H 3Inpaodsold 103 3jIeyd 3In3jodonils

‘CI-v

ainbra

asnvd

LHOITHOIHON

LHOI'THDIH

VA0

TVILINI dTdH

- i DT,

A-16

ROPER

.u
{
»
!
{
w.
!
!
B

LdWO¥d dTAH 91Inpadol1d 103 3iey) 3injonilxs °*£I-V 2Inbid

LHDI'THOIHON LHOI'THOIH

B
:
u
g
g
8

LdWOud™ d1dH

STRUCTURE CHARTS

oy

e o b i S0t WO et 1.

WALSXS d'T3H 21np2o01d 103 3xeyd 3inidonizg

e

*yI-v 2InbBTA

LHOI'THOIHON

LHOI'THDIH

asnvd

yvaTo

WILSXS™ d'13H

A-18

e

i
m
k
w
i

@
£
J

STRUCTURE CHARTS

dvD3DI weiboid 103 1Y) 3In3dNI3S °*GI~¥ 2InbBig
NVZT1008 : SVITJAILNINd °¥ JIOFINI ¢ WIINIOJHIAIANG °C
NVATO08 3 QIATOSEd °¢€ y334nd ¢ JIJANDANVHHOD °T
LHOITHOIHON LHOITHOIH LIYJYILNI NOOQvay
ﬁq *m »« ? “m w 1
LdWOoUd d'T1dH INILOL 3aI7IS”3ILIL AVIID

It b

dvOadI

=@ m—

A-19

e

LIIYYILNI 9I0padoiad I0F JIeyD 31In3dNIJS

*9T~V @2ianbra

e

o e o

o bo fbe et g

ONIYVLS : QYOMANVWWOOL ‘0T YIDALNI * TIATTANVWWOOD °S
ONIYLS ¢ QUOMANYWHWOD °6 ONIYLSDId : ANVWWOOLNO °*¥
NVIT00d : QIATOSEd °8 YADALNI * YIAILNIOAYIIANd °¢
ONIYULSOIL ¢ dANIT °L yaqdnd : YIJINGANVWHOO °C
YIODILNI 3 YIHWNONNOILIO °9 NVE'I008 3 HOLVWITIV °T
RIYL NY0L d'13H w304 INIdd U0 AV1dS1a ANIJaa
d K| d d | d
Xd00 asnvd FOILOL ygadand AOVd NODavay AYVNOILOIA
o a o) dq Y

1

LIAYdUILNI

SND07T 2Inpedoid 103 3Ieyd 3In3oNIis

*LT-VY ?1Inb14

ONIYLS ¢ NOILUNILS3Id °T

ONIYLS 3 dDYN0S °T
asnvd WIdL LHOITHOIHON LHOI'THOIH a1
jz | 11
WOOZ 81201 ANIYHS SNO01T XJINOVH SNDO1 dTVOSOLAY SND01

sNO01

AD-A124 T07

UNCLASSIFIED

DEVELOPMENT OF AN INTERACTIVE CONTROL ENGINEERING
COMPUTER ANALYSIS PACKA..(U) AIR FORCE INST OF TECH
WRIGHT-PATTERSON AFB OH SCHOOL OF ENGI..

C J GEMBARQWSKI DEC 82

R |
S EEFE

Jd3Aa m_n_umu.m

E

m———
S——
mme———
————

E
&_

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

et olhan

-

STRUCTURE CHARTS

A7TVOSOLAVSND0T 3Inpadoid 103 3Ieyd 2In3dnils °*gI-vV 3Inbld

d01L0L

AVITO

INVLSNOD ¢ 8% °1

SYaqQyod aNid

dTYOSOLAY™ SND01T

A-22

STRUCTURE CHARTS

AJINOVHSOD0T 21npado1d 103 3Ieyp 3inzoniys °“61-¥ ainbtd

JOILOL

INVLSNOD ¢ 8% °1

X3INDVR

XJINOYW SND0T

o
v
<

——el

STRUCTURE CHARTS

R SR

MNIYHS SND0T 2aInpanoild 103 3aeyd ain3oniis

*0Z-V 921Inbya

C e e e

dOILOL

INVLSNOD ¢ 8% °T

AJINOVH

ANIYHS™ SNOOT

A-24

STRUCTURE CHARTS

dSNV¥d 9Inpsdoid 103J Jaeyd I3ainljdniys

*1Z-V 2Inb14

yva1o

LHOI'THOIHON

LHOITTHOIH

asnvd

v e R

A-25

C L mm et o SR

WOOQVd¥ 2Inpeooild J03 3TeYD 2IN3oNIIS °ZT-V 2Inb1d

ONIN¥LS : GUOMANVWHODL °Z
ONIJLS : QUOMANVHROD °T

m WINL

S 0
[y]

m e | b 3

2

B

[7+]

WoDavaY

‘o

o ——E———— e

STRUCTURE CHARTS

daI‘IsTATILIL 91npadol1d 103 3Ieyd 3Inldnils

*€Z-V ?aanb1a

YIOIINI ¢ LHOIFH °¥
YIOILNI ¢ HLAIM °¢

JIOdLNI ¢ T00 °T
YIOIINI 32 MO¥Y °T

- t-(01:3- (a0

LHOITHOIH

b | 1

LHOI'THOIHON

SOIHAWVYOON

SOIHAWID

Jva'Io0

aqI1s 41LIL

e

A-27

e

STRUCTURE CHARTS

rov

NYNL 22I0npdd01d 103 3JIvYD 9IN3dNIIS °pZ-V 3inbyg

ONIYLS : QUOMANVWWOOL °9
ONIYLS 2 (QUOMANVWWOD °S YIODILNI ¢
NVIT00d : ¥YIAVAH °V¥ . yagdand 3

NVITO0H 3 QIATOSIY °¢

YAINIOd¥3ddnd °¢T
YIJINGANVHWOD °T

asnvd

WIYL

ILdWOYd NIAL

b=

A-28

(e

LdHOYd NYOL 92np3d0oi1d 103 3aeyd 3inidnils °gz-v ainbyg

LHOI'THOIHON LHODITHOIH Va1

A-29

STRUCTURE CHARTS

LdWOYd NYNL

R A

STRUCTURE CHARTS

X™NYAL 2anpadoiad I10F 3IevYyD 3INn3oniis

*9zZ-V 2anb1a

ONIYLS ¢ NOILUYNILSIA °9 LNVLSNOD °t
ONINLS gounos °s ONIYLISOId ¢ ANVWWODLNO °T
YIOALNI : YIAWNANNOILAO *¥ ygdand 3 yaJINGANVWWOD °T
asnvd WIYL LHOITHDIHON
o | L
LHOI'THOIH dOI1ILOL yIJ409 MOV Va1

:

b

E

X NYaL

5w e velak e M T AR s Lt £ 2 ey SRR STy i S o AN . WA

o

STRUCTURE CHARTS

A.5 SUMMARY

The structure charts for the ICECAP modules (mair
program and subprograms) were included in this appendix in
alphabetical order for ease of reference, As new nmodules
are added to the program they can be easily documented in
this appendix by including them in alphabetical order and by
following the standards that have been defined in this
appendix,

'
i
k)
X
X

APPENDIX B

DATA DICTIONARY

B.l INTRODUCTION

A data dictionary is data about data. This dictionary
documents all of the ICECAP modules, both Pascal and
FORTRAN, that have been developed as a result of this thesis
effort. Entries for the FORTRAN modules that are contained

in VAXTOTAL but used in ICECAP are not included.

A dictionary is not provided for the ICECAP variables.,
These variables (and constants) are documented in the ICECAP
source listing in the form of comments next to the variables

in the declaration part of the program,

B-1

T rEn Ry IR S AR AR 3 Y =

g e ey

53 g T oy

DATA DICTIONARY

B.2 DICTIONARY STANDARDS

The entries in this data dictionary conform to the

following standards:

Entries are in alphabetical order.

Entries are for the program, procedures,
subroutines, and functions.

Data types are shown for the calling parameters and
for the variable lists,

Categories are listed only when there is
information to be provided. If the information is
not applicable for a category, the category heading
is omitted.

Entries are not split between two pages.

Each entry is enclosed in its own box.

When a module has code wunique to the VT100
Terminal, the category "Application" is used.

Entries for code written in Pascal are intermingled
with entries for code written in FORTRAN,

The category "Filename™ is wused for the FORTRAN
modules since each module is separately compiled
and kept in a separate file.

DATA DICTIONARY
B.3 DATA DICTIONARY

(*****t**************************t****t***t****t****t**i**t)

(* PROCEDURE: BOXI'%t *)
(* *)
(* LANGUAGE: VAX/VMS Pascal *)
(* *)
(* DESCRIPTION: Draws a box given the coordinates *)
(* of the upper left hand corner of the box and *)
(* the width (number of columns) and the depth *)
(* {(number of rows) of the box. *)
(* *)
(* APPLICATION: VT100 Terminal *)
(* *)
(* CALLING PARAMETERS: *)
(* ROW : INTEGER *)
(* COL : INTEGER *)
(* WIDTH : INTEGER *)
(* HEIGHT : INTEGER *)
(* *)
(* VARIABLES: *)
(* I : INTEGER *)
* *

(**)

(**)

(* *)
(* PROCEDURE: CLEAR *)
(* *) 1
(* LANGUAGE: VAX/VMS Pascal *) ,
(* *) H
(* DESCRIPTION: Clears the screen and places the *) *f
(* cursor in the home position. *) H
(* *)

: (* APPLICATION: VT100 Terminal *)

: * *

; 2***************************************t******************;

DATA DICTIONARY

(**)
(* *)
(* PROCEDURE: COPY *)
(* *)
(* LANGUAGE: VAX/VMS Pascal *)
(* *)
(* DESCRIPTION: Copies a Transfer Function to *)
(* another Transfer Function or copies a Matrix to *)
(* another Matrix, *)
(* *)
(* CALLING PARAMETERS: *)
(* VAR COMMANDBUFFER : BUFFER *)
(* BUFFERPOINTER : INTEGER *)
(* VAR RESOLVED : BOOLEAN) *)
(* *)
(* VARIABLES: *)
(* I : INTEGER *)
(* MESSAGE : BIGSTRING *)
(* OUTCOMMAND : BIGSTRING *)
(* TCOMMAND1 : STRING *)
(* TCOMMAND2 : STRING *)
* *
] §**)
(**)
* *)
(* PROCEDURE: CURSORRC *)
(* *) |
(* LANGUAGE: VAX/VMS Pascal *) 1
(* *) s
(* DESCRIPTION: Places cursor at a certain position *) §
(* on the screen (ROW, COLUMN) *) g
(* *) i
(* APPLICATION: VT100 Terminal *) :
(* *) :
(* CALLING PARAMETERS: *)
(* ROW : INTEGER *)
(* COL : INTEGER *)
(* *)
(* VARIABLES: *)
(* COL_TENS : CHAR *)
(* COL_ONES : CHAR *)
(* ROW_TENS : CHAR *)
(* ROW_ONES : CHAR *)
* *)
(**)

DATA DICTIONARY

Iw—U-IHI---ﬂl-'-.-H-H.Il-’I-I-upng-'-.!!!.--“-—______““

(**)

PROCEDURE: DEFINE
LANGUAGE: VAX/VMS Pascal

DESCRIPTION: Looks for a legal object of the
command word DEFINE and takes appropriate

action,

CALLING PARAMETERS:
VAR COMMANDBUFFER : BUFFER
VAR BUFFERPOINTER : INTEGER
VAR RESOLVED : BOOLEAN

VARIABLES:
MATCH : BOOLEAN
OPTIONNUMBER : INTEGER

(**)

(**)

(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*

PROCEDURE: DEFINE_PROMPT

LANGUAGE: VAX/VMS Pascal

DESCRIPTION: Provides information on the legal
object of the command word DEFINE and waits for

user response.

CALLING PARAMETERS:
VAR COMMANDBUFFER : BUFFER
VAR BUFFERPOINTER : INTEGER
VAR RESOLVED : BOOLEAN)

(**)

DAy avatiAm

DATA DICTIONARY

(************************i******************t**************)

(* *)
(* PROCEDURE: DEFINE_TF *)
(* *)
(* LANGUAGE: VAX/VMS Pascal *)
(* *)
(* DESCRIPTION: Looks for a legal object of the *)
(* command string DEFINE (transfer function) *) !
(* and takes appropriate action. *) 3
(* *)
(* CALLING PARAMETERS: *)
(* VAR COMMANDBUFFER : BUFFER *) f
(* BUFFERPOINTER : INTEGER *)
(* VAR RESOLVED : BOOLEAN *)
(* *)
(* VARIABLES: *)
(* TCOMMANDWORD : STRING *)
(* *

(**)

(**)

(* *)
(* PROCEDURE: DEF_TF_PLANE *)
(* *) ¢
(* LANGUAGE: VAX/VMS Pascal *)
(* *)
(* DESCRIPTION: Processes the object of DEFINE *)
(* (transfer function) (POLY or FACT) to determine *)
(* which PLANE is desired. *)
(* *)
(* CALLING PARAMETERS: *)
(* VAR COMMANDBUFFER : BUFFER *)
(* BUFFERPOINTER : INTEGER *)
(* VAR RESOLVED : BOOLEAN *)
(* *)
(* VARIABLES: %)
(* COMMANDWORD : STRING *)
(* OPTIONNUMBER : INTEGER *)

(**)

»
*
e

— B e

DATA DICTIONARY

(**)

(* *)
(* PROCEDURE: DICTIONARY *)
(* *)
(* LANGUAGE: VAX/VMS Pascal *)
(* *)
(* DESCRIPTION: Checks each word in a command string *)
(* against all legal ICECAP KEYWORDs. It notifies ¥*)
(* the user of all illegal command words used in *)
(* the command string, If it finds any illegal *)
(* command words it returns ALLMATCH = FALSE. *)
(* *)
(* CALLING PARAMETERS: *)
(* VAR ALLMATCH : BOOLEAN *)
(* VAR COMMANDBUFFER : BUFFER *)
(* BUFFERPOINTER : INTEGER *)
(* *)
(* VARIABLES: *)
(* MATCH : BOOLEAN *)
* *

(**)

(**)

(* *)
(* PROCEDURE: DISPLAY_OR_PRIN *)
(* *)
(* LANGUAGE: VAX/VMS Pascal *)
(* *)
(* DESCRIPTION: Displays item on screen or prints *)
(* item in ANSWER File. *)
(* *)
(* CALLING PARAMETERS: *)
(* COMMANDBUFFER : BUFFER *)
(* BUFFERPOINTER : INTEGER *)
(* VAR RESOLVED : BOOLEAN *)
(* *)
(* VARIABLES: *)
(* ANSWERFLAG : BOOLEAN *)
(* I : INTEGER *)
(* MESSAGE : BIGSTRING *)
(* MESSAGEBUFFER : BUFFER *)
(* OUTCOMMAND : BIGSTRING *)
(* TCOMMAND]1 : STRING *)
(* TCOMMAND2 : STRING *)
(* WHERE : STRING *)
* *)

(**)

B s e

E—

DATA DICTIONARY

(**)

(* *)
(* SUBROUTINE: FIND_BORDERS *)
(* *)
{* FILENAME: FINDBORD,ICE *)
(* *)
(* LANGUAGE: VAX/VMS FORTRAN *)
(* *)
(* DESCRIPTION: Finds the four borders for the Root *)
{* Locus plot (known in TOTAL as AA, BB, CC, DD) *)
(* based on the poles and zeros of OLTF *)
(* *)
(* VARIABLES: *)
(* AA : REAL*4 *)
(* BB : REAL*4 *)
(* CC : REAL*4 *)
(* DD : REAL*4 *)
(* DEBUG : LOGICAL *)
(* EAST : INTEGER *)
(* HEJIGHT : REAL*4 *)
(* I ¢+ INTEGER *)
(* LENGTH : REAL*4 *)
(* NOLP : INTEGER *)
(* NOLZ : INTEGER *) ,
(* OLPOLE : MATRIX [50,2] OF REAL*4 *)]
(* OLZERO : MATRIX [50,2] OF REAL*4 *)
(* SOUTH : INTEGER *) i
(* WEST : INTEGER *) ;
(* * ’

(**)

(*****t****t***) L

PROCEDURE: FORM

LANGUAGE: VAX/VMS Pascal

DESCRIPTION: Forms OLTF or CLTF depending upon
user's choice,

CALLING PARAMETERS:
VAR COMMANDBUFFER : BUFFER
BUFFERPOINTER : INTEGER
VAR RESOLVED : BOOLEAN

(*********************ﬁi******************************t****)

DATA DICTIONARY

(**)

(* *)
(* PROCEDURE: GRAPHICS *)
(* *)
(* LANGUAGE: VAX/VMS Pascal *)
(* *)
(* DESCRIPTION: Places the terminal in the graphics *)
(* mode so that the Special Graphics Characters in ¥*)
(* Table 3-9 of the VT100 User Guide can be used. *)
(* *)
(* APPLICATION: VT100 Terminal *)
* *)

(**)

(**)

(* *)
(* PROCEDURE: HELP *)
(* *)
(* LANGUAGE: VAX/VMS Pascal *)
(* *)
(* DESCRIPTION: Looks for a legal object of the *)
(* command word HELP and takes appropriate *)
(* action. *) '
(* *) i
(* CALLING PARAMETERS: *)
(* VAR COMMANDBUFFER : BUFFER *)
(* VAR BUFFERPOINTER : INTEGER *)
(* VAR RESOLVED : BOOLEAN *)
(* *)
(* VARIABLES: *) [
(* COMMANDWORD : STRING *) J
(* TCOMMANLCWORD : STRING *) §
* *)

(**) i

(**)

(* *)
(* PROCEDURE: HELP_COPY *)
(* *)
(* LANGUAGE: VAX/VMS Pascal :)
*)
(* DESCRIPTION: Explains how to use the COPY *)
(* command, *)
(* *)
(* APPLICATION: VT100 Terminal *)
* *)

(*************i******************t*****************t*******)

B-9

VT

DATA DICTIONARY

(****t***)

(* *)
(* PROCEDURE: HELP_INITIAL *)
(* *)
(* LANGUAGE: VAX/VMS Pascal *)
(* *)
(* DESCRIPTION: Displays all valid Command Words *)
(* that can be used to start a Command String. *)
(* *

(**)

(**)

(* *)
(* PROCEDURE: HELP_PROMPT *)
(* *)
(* LANGUAGE: VAX/VMS Pascal *)
(* *)
(* DESCRIPTION: Displays all valid Command Words *)
(* that can be used to start a Command String. *)
(* *

(**)

(*i**)

(* *)
(* PROCEDURE: HELP_SYSTEM *)
(* *)
(* LANGUAGE: VAX/VMS Pascal *)
(* *)
(* DESCRIPTION: Displays all valid ICECAP command *)
(* words in alphabetical order, *)
(* *

(**t***)

(**t**tt******i**)

22 PROCEDURE: HIGHLIGHT E;
2* LANGUAGE: VAX/VMS Pascal *;
2: DESCRIPTION: Puts all subsequent characters into :;
(: reverse video until NOHIGHLIGHT is called. :;
E: APPLICATION: VT100 Terminal :)

(**)

DATA DICTIONARY

(*********************t******************************t*****)

(* *)
(* PROGRAM: ICER *)
(* *)
(* FILENAME: ICER.PAS *)
(* *)
(* LANGUAGE: VAX/VMS Pascal and FORTRAN *)
(* *)
(* DESCRIPTION: ICECAP - Interactive Control *)
(* Engineering Computer Analysis Package *)
(* *)
(* APPLICATION: VT100 Terminal *)
(* *)
(* DATE OF REVISION: 16 AUG 82 *)
(* *)
(* AUTHOR: Major Charles J. Gembarowski *)
(* *)
(* CONSTANTS : *)
(* BUFFERSIZE = 10 *)
(* COMMANDSIZE = 80 *)
(* WORDSIZE = 12 *)
(* *)
(* TYPES: *)
(* BIGSTRING = PACRKED ARRAY[l,.COMMANDSIZE]} OF CHAR *)
(* STRING = PACKED ARRAY([l..WORDSIZE] OF CHAR *)
(* BUFFER = ARRAY[l..BUFFERSIZE] OF STRING *)

VARIABLES:
BUFFERPOINTER : INTEGER
CLC : INTEGER
COMMAND : ARRAY[i..COMMANDSIZE] OF CHAR
COMMANDBUFFER : BUFFER
COMMANDWORD : STRING
CONTINUE : CHAR
HEADER : BOOLEAN
I : INTEGER
ICOMMAND : BIGSTRING
KEYWORD : STRING
LETTER : CHAR
LINE : BIGSTRING
OPTIONNUMBER : INTEGER
PRINTFLAG : BOOLEAN
RESOLVED : BOOLEAN
STATUS : INTEGER
TCOMMANDWORD : STRING
UCOMMAND : BIGSTRING
WLC : INTEGER
WORD : ARRAY[1, ,WORDSIZE] OF CHAR

(************t*t***************************************t***)

DATA DICTIONARY

(***t****)
(* *)
(* PROCEDURE: INTERPRET *)
* *)
(* LANGUAGE: VAX/VMS Pascal *)
(* *)
(* DESCRIPTION: Reads command words out of the *)
(* command buffer and calls appropriate procedures *)
(* for action. *)
(* *)
(* CALLING PARAMETERS: *)
(* VAR COMMANDBUFFER : BUFFER *)
(* VAR BUFFERPOINTER : INTEGER *)
(* VAR RESOLVED : BOOLEAN ' *)
(* VAR PRINTFLAG : BOOLEAN *)
(* *)
(* VARIABLES: *)
(* ALLMATCH : BOOLEAN *)
(* COMMANDWORD : STRING *)
(* OUTCOMMAND : BIGSTRING *)
(* TCOMMANDWORD : STRING *)
(* OPTIONNUMBER : INTEGER *)
* *
‘ (**;
(********************************t*************************)
(* *)
(* PROCEDURE: LOCUS *)
(* *)
(* LANGUAGE: VAX/VMS Pascal *)
(* *)
(* DESCRIPTION: Displays, prints or plot the Root *)
(* Locus for the OLTF which must be already defined. *)
(* *)
r (* APPLICATION: VT100 Terminal *)
(* *)
(* CALLING PARAMETERS: *)
i (* VAR COMMANDBUFFER : BUFFER *)
(* BUFFERPOINTER : INTEGER *)
(* VAR RESOLVED : BOOLEAN *)

(***t******)

DATA DICTIONARY

(**)

(* *)
(* PROCEDURE: LOCUS_AUTOSCALE *)
(* *)
(* LANGUAGE: VAX/VMS Pascal *)
(* *)
(* DESCRIPTION: Displays, prints or plot the Root *)
(* Locus for the OLTF which must be already defined. *)
(* Chooses the borders based on the locations of *)
(* poles and zeroes. *)
(* *)
(* APPLICATION: VT100 Terminal *)
* *)

(**)

(**)

(* *)
(* PROCEDURE: LOCUS_MAGNIFY *)
(* *)
(* LANGUAGE: VAX/VMS Pascal *)
(* *)
(* DESCRIPTION: Displays, prints or plot the Root *)
(* Locus for the OLTF which must be already defined. ¥*)
(* Doubles the size of the locus from the last time *)
(* it was shown, *)
(* *)
(* APPLICATION: VT100 Terminal *)
* *)

(******************t***************************************)

(**)

(* *)
(* PROCEDURE: LOCUS_SHRINK *)
(* *)
(* LANGUAGE: VAX/VMS Pascal *)
(* *)
(* DESCRIPTION: Displays, prints or plot the Root *)
(* Locus for the OLTF which must be already defined. *)
(* Shrinks the size of the locus by a factor of 2. *)

APPLICATION: VT100 Terminal

(**)

DATA DICTIONARY

(********************************t*********i*********t***t*)

(* *)
(* PROCEDURE: LOCUS_ZOOM *)
(* *)
(* LANGUAGE: VAX/VMS Pascal *)
(* *)
(* DESCRIPTION: Displays, prints or plot the Root *)
(* Locus for the OLTF which must be already defined. *)
(* User chooses center point and the horizontal *)
(* distance to the border *)
(* *)
(* APPLICATION: VTI100 Terminal *)
(* *

(**)

(*t**)

(* *)
(* SUBROUTINE: MAGNIFY *)
(* *)
(* FILENAME: MAGNIFY.ICE *)
(* *)
(* LANGUAGE: VAX/VMS FORTRAN *)
(* *)
(* DESCRIPTION: Magnifies the Root Locus by finding *)
(* new borders for the Root Locus plot. Does this *)
(* by dividing the present values of AA, BB, CC, *)
(* and DD by two. *)
(* *)
(* VARIABLES: *)
(* AA : REAL%*4 *)
(* BB : REAL*%*4 *)
(* CC : REAL*4 *)
(* DD : REAL*4 *)
(* ®

(**)

DATA DICTIONARY

(**)

(* *)
(* PROCEDURE: NOGRAPHICS *)
(* *)
(* LANGUAGE: VAX/VMS Pascal *) 1
(* *) !
(* DESCRIPTION: Takes the VT100 terminal out of the *) i
(* graphics mode. Restores the lowercase character *) J
(* set, :) i
(* *)
(* APPLICATION: VT100 Terminal *)
* *

(**)

(**)

(* *
(* PROCEDURE: NOHIGHLIGHT *)
(* *)
(* LANGUAGE: VAX/VMS Pascal *)
(* *)
(* DESCRIPTION: Puts all subsequent characters into ¥*)
(* normal video. *)
(* *) !
(* APPLICATION: VT100 Terminal *)]
* *
(**g 4
(*;**)
(* *)
(* PROCEDURE: PACK_BUFFER *)
i (* *)
i (* LANGUAGE: VAX/VMS Pascal *)
i (* *)
(* DESCRIPTION: Takes the COMMANDBUFFER and packs *)
(* it into OUTCOMMAND which will go to TOTAL. *)
(* *)
(* CALLING PARAMETERS: *)
(* COMMANDBUFFER : BUFFER *)
(* VAR OUTCOMMAND : BIGSTRING *)
(* COMMANDLEVEL : INTEGER *)
(* *)
(* VARIABLES: *)]
(* I : INTEGER *) ;
(* J : INTEGER *) ;
(* OUTARRAY : ARRAY[1l..COMMANDSIZE] OF CHAR *)
(* TEMP : ARRAY[1l,.WORDSIZE] OF CHAR *)
((***t*t******)

B~15

DATA DICTIONARY

(*****1**************************t*************************)

(* *)
(* PROCEDURE: PAUSE *)
(* *)
(* LANGUAGE: VAX/VMS Pascal *)
(* *)
(* DESCRIPTION: Causes program to halt until *)
(* <RETURN> is pressed, thereby allowing the user *)
(* time to read the screen, *)
(* *)
(* APPLICATION: VT100 Terminal *)
(* K *)
(* VARIABLES: *)
(* CONTINUE : CHAR *)
(* *

(**)

(**)

(* *)
(* PROCEDURE: PRINT_BUFFER *)
(* *)
(* LANGUAGE: VAX/VMS Pascal *)
(* *)
(* DESCRIPTION: Prints out entire command buffer *)
(* with no leading blanks, one trailing blank, no *)
(* abbreviations, and with one space between words. *)
(* Words are in upppercase. *)
(* *)
(* CALLING PARAMETERS: *)
(* COMMANDBUFFER: BUFFER *)
(* BUFFERPOINTER : INTEGER *)
(* *)
(* VARIABLES: *)
(* TCOMMANDWORD : STRING *)
(* *

(**)

DATA DICTIONARY

(**)

PROCEDURE: READCOM

(* LANGUAGE: VAX/VMS Pascal *)

(* DESCRIPTION: Reads in ICOMMAND (until <CR>), *)
(* changes it to uppercase (UCOMMAND), breaks it *)
(* into command words, and puts the command words *)

(* into COMMANDBUFFER.

CALLING PARAMETERS:
(* VAR COMMANDBUFFER
VAR BUFFERPOINTER

BUFFER *)
INTEGER

VARIABLES:
(* COMMANDWORD : STRING *)
TCOMMANDWORD : STRING *)

(**)

(**)

(* FUNCTION: STR$UPCASE *) i

(* DESCRIPTION: Puts all letters into uppercase *)

CALLING PARAMETERS:
(* $STDESCR UCOMMAND : BIGSTRING *)
(* $STDESCR ICOMMAND : BIGSTRING *)

(***ihkv****fii@

Ty I G g AT i YT TSIy
A

1 T e AT e B Bt (01

BOEETPRAT 7= e ey

DATA DICTIONARY

(**)

(* *)
(* SUBROUTINE: SHRINK *)
(* *)
(* FILENAME: SHRINK.ICE *)
(* *)
(* LANGUAGE: VAX/VMS FORTRAN *)
(* *)
(* DESCRIPTION: Shrinks the Root Locus by finding *)
(* new borders for the Root Locus plot. Does this *)
(* by multiplying the present values of AA, BB, *)
(* CC, and DD by two. *)
(* *)
(* APPLICATION: VT100 Terminal *)
(* *)
(* VARIABLES: *)
(* AA : REAL*4 *)
(* BB : REAL*4 *)
(* CC : REAL*4 *)
(* DD : REAL*4 *)
* *)

(**)

(**)

gz PROCEDURE: TITLE_SLIDE E;
f* LANGUAGE: VAX/VMS Pascal *;
&I DESCRIPTION: Displays initial screen showing :;
(: ICECAP in large letters and copyright information. :;
E: APPLICATION: VT100 Terminal :)

(**)

B-18

DATA DICTIONARY

(**)

SUBROUTINE: TOTICE
FILENAME: TOTICE.ICE
LANGUAGE: VAX/VMS FORTRAN

DESCRIPTION: 1Interfaces the Pascal portion of
ICECAP with the FORTRAN portion by passing
the option numbers and commands sent to it by
the Pascal portion to the FORTRAN portion,

CALLING PARAMETERS:
OPTIONNUMBER : INTEGER
$STDESCR LINE : PACKED ARRAY [INTEGER] OF CHAR

VARIABLES:
DATM : MATRIX [100] OF REAL*4
DEBUG : LOGICAL
GOPLOT : LOGICAL
I : INTEGER
IPLOT : INTEGER
JFLAG : MATRIX (100] OF INTEGER
LASTOPT : INTEGER
LINE : STRING [80] OF CHAR
LOPT : INTEGER
MCOMM : MATRIX [100] OF INTEGER
MPT : INTEGER
NNU : INTEGER
NOPT : INTEGER
NROUTE : MATRIX [10] OF INTEGER
NRPT : INTEGER
OPTN : INTEGER
REQUEST : LOGICAL

(**)

T HH-F-H-!FF-“'-!-.-!!-F-!-!I-:l—H-ﬂ-I-!q--n--n-nwwu——nq‘

DATA DICTIONARY

(**)

(* *)
(* SUBROUTINE: TOTINI *)
(* *)
(* FILENAME: TOTINI,ICE *)
(* *)
(* LANGUAGE: VAX/VMS FORTRAN *)
(* *)
(* DESCRIPTION: Initializes the FORTRAN modules in *)
(* ICECAP as part of the ICECAP initialization *)
(* process. *)
(* *)
(* VARIABLES: *)
(* ALREADY : LOGICAL *)
(* ANSWER : LOGICAL *) ;
(* CALC : LOGICAL *) :
(* CLNPOLY : MATRIX [51] OF REAL*4 *)
' (* CLOSED : LOGICAL *)
i (* DEBUG : LOGICAL *)
{ (* DECIBEL : LOGICAL *)
i (* DEGREE : LOGICAL *)
(* DMAT : MATRIX [10,10] OF REAL*4 %)]
(* ECHO : LOGICAL *)
(* EXTCALC : LOGICAL *) |
: (* FILOPN : LOGICAL *) '
‘, (* GRID : LOGICAL *) !
{ (* HERTZ : LOGICAL *) '
(* INMASS : MATRIX [47] OF INTEGER *)
(* RFLAG : MATRIX [20] OF INTEGER *)
. (* LFLAGE : MATRIX [20]) OF INTEGER *)
(* NCALL : MATRIX [20] OF INTEGER *)
(* NGO : INTEGER *)
; (* PLAT : LOGICAL *)
| (* REQUEST : LOGICAL *)
(* SCALE : LOGICAL *)
(* TEKPLOT : LOGICAL *)
(* TEST : LOGICAL *)
* *)

(**)

DATA DICTIONARY

(**)

(* *) i
(* PROCEDURE: TRIM *)

(* *)

(: LANGUAGE: VAX/VMS Pascal :; :
2* DESCRIPTION: Trims the trailing blanks off of *) :
(* the SOURCE string and places the stripped *)

(* version into the DESTINATION string. :;

(*

(* CALLING PARAMETERS: *)
(* VAR SOURCE : STRING *)
(* VAR DESTINATION : STRING *)

VARIABLES:
I : INTEGER *)
UDESTINATION : ARRAY[1..WORDSIZE] OF CHAR
USOURCE : ARRAY[1..WORDSIZE] OF CHAR

(**)

(***i**)

PROCEDURE: TURN

—— S P~ P X R X X
* * % » % % % % %
»*» * % * % % * %
g Ao d S
T e e S

H
(* LANGUAGE: VAX/VMS Pascal *)
(* *)
(* DESCRIPTION: Used to turn the various control *)
(* switches ON and OFF. *)
(* *)
; (* CALLING PARAMETERS: *)
! (* VAR COMMANDBUFFER : BUFFER *) }
(* VAR BUFFERPOINTER : INTEGER *) i
(* VAR RESOLVED : BOOLEAN *) ;
(* *) é
(* VARIABLES: *) ;
(* COMMANDWORD : STRING *) :
(* TCOMMANDWORD : STRING *) i
* *) H

(**)

B~-21

DATA DICTIONARY

(*******t**) i

(* *)
(* PROCEDURE: TURN_PROMPT *)
(* *)
(* LANGUAGE: VAX/VMS Pascal *)
(* *)
(* DESCRIPTION: In the absence of an object for *)
(* TURN, it prompts for one. *)
(* *)
(* CALLING PARAMETERS: *)
(* VAR COMMANDBUFFER : BUFFER *)
(* VAR BUFFERPOINTER : INTEGER *) 1
(* VAR RESOLVED : BOOLEAN *)
(* *

(**)

(**)

(* PROCEDURE: TURN_X *)
(* *)
(* LANGUAGE: VAX/VMS Pascal *)
(* *)
(* DESCRIPTION: Processes the object of TURN by *)
(* looking for OFF or ON and sets the switch *)
(* accordingly. *)
(* *)
(* CALLING PARAMETERS: *) 1
(* VAR COMMANDBUFFER : BUFFER *)
(* VAR BUFFERPOINTER : INTEGER *)
(* VAR RESOLVED : BOOLEAN *)
(* VAR HEADER : BOOLEAN *) 1
(* *)
(* VARIABLES: *)
(* OPTIONNUMBER : INTEGER *)
(* OUTCOMMAND : BIGSTRING *)
(* TCOMMANDWORD : STRING *)
(* *

(**)

T e e

B-22

DATA DICTIONARY

B.4 DATA DICTIONARY BLANK FORM

A blank data dictionary entry form is included below
and may be reproduced as necessary for adding new items to

the data dictionary.

(*********************i************************************)

(* *) i
(* PROCEDURE: *) !
(* *)
(* LANGUAGE: VAX/VMS *)
(* *)
(* DESCRIPTION: *)
(* *)
(* *)
(* *)
(* *)
(* *)
(* *)
3 (* *) ;
| . g* APPLICATION: VT100 Terminal *) {
* *) I'
(* CALLING PARAMETERS: *)
(* *)
(* *)
(* *)
(* *) ﬂ
(* *)
(* *) :
(* *) ;
(* VARIABLES: *) ?
(* *) ;
(* *) :
(* *) :
(* *)
(* *))
(* *) i
(* *)
(* *)
(* *)
(* *)
(* *)
(* *)
* *)

(**********i**t*****************i**********************i***)

B-23

DATA DICTIONARY
B.5 SUMMARY

The data dictionary for the program, procedures,
functions, and subroutines of ICECAP has been provided along
with a blank dictionary entry form for use in further
documenting the ICECAP as it develops through subsequent
thesis efforts. Dictionary type information on the ICECAP

variables can be found in the ICECAP source listing.

B-24

APPENDIX C
PROBLEM REPORTS

C.1 INTRODUCTION

This appendix documents the problem reports generated
as a result of having analyzed and executed TOTAL, VAXTOTAL,
and ICECAP., These problem reports can serve as a basis for
future development of ICECAP. A blank problem report form
has been included. This form can be reproduced as necessary
so that a continuous record of program problems and their

corrections can be maintained,
C.2 PROBLEM REPORTS

The following pages contain the problem reports that

have been accumulated to date. There is one report per

page,

:
. PROBLEM REPORTS
<
PROBLEM REPORT NUMBER: 1 y
DATE: 1 JUL 82
ORIGINATOR: Major Charles J. Gembarowski
PROBLEM NAME: DEL
PROGRAM(S) HAVING PROBLEM: TOTAL, VAXTOTAL, ICECAP {
PROBLEM DESCRIPTION: Option 49 resets DEL and DELPR to zero f
after printing out their value. Cause is Subroutine ROOT10, '
lines 0181 and 0182, Result is that the Root Locus Options
bomb out.
PROBLEM SERIOUSNESS: Very
DIFFICULTY OF FIX: Easy
SUGGESTIONS FOR FIX: Avoid that section of code by
inserting the following 1line of c¢ode: "IF NOPT N,EQ.49 !
THEN", i
L DISPOSITION: Fix is implemented and has been tested in 1
ICECAP, 1
é
t

C-2

r. ; ; m—mj

PROBLEM REPORTS

« e
PROBLEM REPORT NUMBER: 2
DATE: 23 JUN 82

ORIGINATOR: Major Charles J. Gembarowski

PROBLEM NAME: Output

PROGRAM(S) HAVING PROBLEM: TOTAL, VAXTOTAL, ICECAP

PROBLEM DESCRIPTION: When writing output to the ANSWER.DAT
file, the user does not see what is being written.

PROBLEM SERIOUSNESS: Major inconvenience

DIFFICULTY OF FIX: Medium

SUGGESTIONS FOR FIX: Write the same information ¢o the
screen and to the file in sequence so that user can see what
is being written.

DISPOSITION: This technique has been implemented and tested
in ICECAP.

PROBLEM REPORTS

PROBLEM REPORT NUMBER: 3

DATE: 3 JUN 82

ORIGINATOR: Majof Charles J. Gembarowski

PROBLEM NAME: Root Locus Scaling

PROGRAM(S) HAVING PROBLEM: TOTAL, VAXTOTAL, ICECAP

PROBLEM DESCRIPTION: User should not have to figure out the
values to assign to AA, BB, CC, and DD in order to establish
reasonable scales for a Root Locus plot. Default values are
not adequate,

PROBLEM SERIOUSNESS: Major inconvenience
DIFFICULTY OF FIX: Medium

SUGGESTIONS FOR FIX: Implement autoscaling based on the
locations of the poles and zsroes of the Open Loop Transfer
Function. Show only the top half of the Root Locus (with
only a small portion of the bottem half for context) since
the bottom half of the Root Locus is a mirror image of the
top half. Allow the user to magnify and shrink the Root
Locus as desired as well as zoom about a chosen point.

DISPOSITION: Autoscaling, magnification, and shrinking has
been implemented and tested in ICECAP. The structure and
command language of ICECAP is ready for the implementation
of the zoom feature,

B s 1+

o A -

e

Y

PROBLEM REPORTS

PROBLEM REPORT NUMBER: 4

DATE: 18 JUL 82

ORIGINATOR: Major Charles J. Gembarowski

PROBLEM NAME: Precision

«ROGRAM(S) HAVING PROBLEM: VAXTOTAL, ICECAP

PROBLEM DESCRIPTION: The fact that the VAX is less precise
than the Cyber could cause calculation errors, such as
divide by zero, and wrong decisions.

PROBLEM SERIOUSNESS: Unknown

DIFFICULTY OF FIX: Massive

SUGGESTIONS FOR FIX: Fix occurrences as they happen and as
they are understood. Methodically replace some of the
cruder algorithms of TOTAL with more numerically precise
algorithms.

DISPOSITION: Continuous effort., However, PI, the variable
representing the transcendental number pi, has been made

more precise in ICECAP to make the angle calculations more
reliable particularly in the root locus options,

Iy PR ot AR o) e

|
i
]
;
;

PROBLEM REPORTS

PROBLEM REPORT NUMBER: 5§

DATE: 25 JUL 82

ORIGINATOR: Major Charles J. Gembarowski

PROBLEM NAME: Root-finder

PROGRAM(S) HAVING PROBLEM: TOTAL, VAXTOTAL, ICECAP

PROBLEM DESCRIPTION: The programs are oftentimes unable to
find the roots of polynomials properly, particularly when
there are multiple roots involved. Several different
root-finders are implemented in the programs but the user
does not know when and why to select from among them,
PROBLEM SERIOUSNESS: Very

DIFFICUOLTY OF FIX: Medium

SUGGESTIONS FOR FIX: Strip out all of the present
root-finders and use one good one,

DISPOSITION: All of the root-finders have been stripped out
of ICECAP and replaced with a library routine ZRPOLY that
uses the Jenkins-Traub method. This fix has been tested and
the results are satisfactory.

PROBLEM REPORTS

PROBLEM REPORT NUMBER: 6

DATE: 21 JUL 82

ORIGINATOR: Captain Glen T, Logan

PROBLEM NAME: 1Initialization Via Data Statements

PROGRAM(S) HAVING PROBLEM: VAXTOTAL, ICECAP

PROBLEM DESCRIPTION: The programs use data statements to
initialize variables. This is a carryover from the overlay
structure of TOTAL. The result is that some variables that
are supposed to be reinitialized never get reinitialized
because the data statements are read only once during
program execution.

PROBLEM SERIOUSNESS: Very

DIFFICULTY OF FIX: Medium

SUGGESTIONS FOR FIX: Find all occurrences and initialize
the variables in question via a set statement,

DISPOSITION: All known occurrences have been fixed in
VAXTOTAL and ICECAP, However, this PR is left open until
all occurrences can be found and fixed.,

prey

— e

e e S s (It RO

PROBLEM REPORTS

.

PROBLEM REPORT NUMBER: 7

DATE: 15 JUN 82

ORIGINATOR: Captain Roslyn J. Taylor

PROBLEM NAME: Use of Lower Case for Terminal Input
PROGRAM(S) HAVING PROBLEM: TOTAL, VAXTOTAL, ICECAP

PROBLEM DESCRIPTION: Programs do not accept lower case
input,

PROBLEM SERIOUSNESS: Minor inconvenience

DIFFICULTY OF FIX: Medium

SUGGESTIONS FOR FIX: Make the Pascal portion of ICECAP
allow lower, upper, and mixed case for input.

DISPOSITION: Pascal portion of ICECAP allows the use of any
case for input, however, until ICECAP is fully implemented,
there are portions of the FORTRAN modules in ICECAP that
still require upper case for input. This PR should stay
open until ICECAP is fully implemented or until the FORTRAN
modules are changed to allow the use of any case input,

A 1 g B o {4 7 S\ T S

]

PROBLEM REPORTS

PROBLEM REPORT NUMBER: 8

DATE: 15 JUN 82

ORIGINATOR: Major Charles J., Gembarowski

PROBLEM NAME: The FORM Command

PROGRAM(S) HAVING PROBLEM: ICECAP

PROBLEM DESCRIPTION: The FORM command is unlike the other
commands in ICECAP in that if it is incomplete the user must
retype the entire command. The other ICECAP commands allow
the user to continue typing an incomplete command,

PROBLEM SERIOUSNESS: Minor inconvenience

DIFFICULTY OF FIX: Medium

SUGGESTIONS FOR FIX: Implement command continuation in the
same manner as the other ICECAP commands.

DISPOSITION: Still open because no attempt has been made to
implement the command continuation feature.

Cc-9

PROBLEM REPORTS

PROBLEM REPORT NUMBER: 9

DATE: 15 AUG 82

ORIGINATOR: Major Charles J. Gembarowski

PROBLEM NAME: ICECAP Logo

PROGRAM(S) HAVING PROBLEM: ICECAP

PROBLEM DESCRIPTION: ICECAP uses a checkerboard character
as a building block to form the large ICECAP logo. The
checkboard character does not stand out as much as a solid
character,

PROBLEM SERIOUSNESS: Minor

DIFFICULTY OF FPIX: Easy but tedious

SUGGESTIONS FOR FIX: Replace the checkboard character with
the space in inverse video. This requires turning inverse
video on and off.,

DISPOSITION: Partially implemented. Fix can be patched

into the 1latest version of ICECAP when complete. Fix as
time permits.

c-10

PROBLEM REPORTS

PROBLEM REPORT NUMBER: 10

DATE: 25 AUG 82

ORIGINATOR: Major Charles J. Gembarowski

PROBLEM NAME: Error Recovery

PROGRAM(S) HAVING PROBLEM: ICECAP

PROBLEM DESCRIPTION: Program presently requires that, in
case of error, the entire command must be retyped from the
beginning.

PROBLEM SERIOUSNESS: Medium inconvenience

DIFFICULTY OF FIX: Unknown, but not expected to be easy
SUGGESTIONS FOR FIX: Unknown, except that some scheme ¢to
keep that portion of the command that is correct in the
command buffer and continue the command input process from
the point of last corrct entry.

DISPOSITION: Still open because there has been no actempt
to implement an error recovery feature,

PROBLEM REPORTS

C.3 BLANK PROBLEM REPORT FORM

PROBLEM REPORT NUMBER:
DATE:

ORIGINATOR:

PROBLEM NAME:

PROGRAM(S) HAVING PROBLEM:

PROBLEM DESCRIPTION:

PROBLEM SERIOUSNESS:

DIFFICULTY OF FIX:

SUGGESTIONS FOR FIX:

DISPOSITION:

C-12

PROBLEM REPORTS

C.4 SUMMARY

A set of problem reports has been presented. Most of the

problems contained herein have already been corrected and

the fix has been implemented in ICECAP, This appendix is

meant to be the start of a continuous effort to document

problems with ICECAP.

APPENDIX D

COMPUTER AIDED DESIGN PACKAGES FOR CONTROL

D.1 INTRODUCTION

This appendix provides a synopéis of
computer—aided design programs studied

investigation.

D.2 PROGRAM SYNOPSES

ADAPT

BL2Z

BPASS

CADS

CALICO

CESA
DELIGHT-MIMO
DIGIKON
FPORTRAC
HONEY=-X

1-G SPICE
INTERAC
LPASS

LSAP
MATRIXx

SOFE
SUPER-SCEPTRE
TOTAL
VAXTOTAL

representative

during this 1

COMPUTER AIDED DESIGN PACKAGES FOR CONTROL

PROGRAM NAME: ADAPT -- Recursive Digital Filters (Kalman
Filters)

DESCRIPTION: Reads desired filter parameters (SIGMA, M
and Q), generates an initial S (covariance) matrix, T
matrix, and W (weight) matrix, The S and W matrices are
used to initialize the § and W matrices, respectively,
Next, 101 sample points provided by the user are read as
input to the Kalman filter. ADAPT tabulates the sample
number filter input, filter output, error signal, and
Kalman gain,

LANGUAGE: DEC PORTRAN
HOST COMPUTER: PDP-11/20
REFERENCE: [4: 117]

PROGRAM NAME: BLZ -- Bilinear Z-transform

DESCRIPTION: An interactive digital filter design program
that calculates digital transfer function coefficients
and magnitude function, applies a bilinear
transformation with pre-warping to obtain realizable
stable digital filters. Consists of a main program and 4
subroutines for pre-warping.

LANGUAGE: DEC FORTRAN
HOST COMPUTER: PDP-11/20
REFERENCE: [4: 81])

COMPUTER AIDED DESIGN PACRAGES FOR CONTROL

- - - e s = b S S A G S e S e e SIS S S Yus S G G

PROGRAM NAME: BPASS ~- Band Pass Filter Design

DESCRIPTION: Designs maximally flat Butterworth or
Chebychev filter with equal ripple in pass band (band
pass or band stop). Generates digital filter
coefficients for up to six second order sections in
cascade (12th order). Must be called as a subroutine
from the main program,

LANGUAGE: FORTRAN IV !

HOST COMPUTER: PDP-11/20
REFERENCE: [4: 153]

PROGRAM NAME: CADS -- Computer Automated Design of Systems

DESCRIPTION: Simulates and optimizes control systems and
circuits. Control system is defined in block diagram
form (transfer functions). The transfer functions are
reduced to first order differential equations, The
unknown or adjustable parameters are set by a
minimization routine to acheive the desired reponse,
Batch (cards) input.

LANGUAGE: FORTRAN IV

HOST COMPUTER:

REFERENCE: [4: 82]

- - - = o - - -

COMPUTER AIDED DESIGN PACKAGES FOR CONTROL

PROGRAM NAME: CALICO -~ Computer Aided Linear Time-
Invariant Compensator Optimization Program

DESCRIPTION: For design of compensators to acheive
desired response in accordance with selected cost
function, Batch (cards) input, Four major parts
including subroutines -- 180 K words (210 K with
plotting routines)

T TR

LANGUAGE: FORTRAN 1V
HOST COMPUTER: IBM 360-67
REFERENCE: [42: 32]

PROGRAM NAME: CESA -- Complete Eigenstructure Assignment
Program

DESCRIPTION: 2An interactive program to design a state
space control law for multi-input, multi-output systems,
Includes requlator, disturbance rejector, and tracker
design capabilities.

LANGUAGE: FORTRAN IV

HOST COMPUTER: CDC CYBER
REFERENCES: [36]

COMPUTER AIDED DESIGN PACKAGES FOR CONTROL

e e e

PROGRAM NAME: DELIGHT-MIMO (in development)

DESCRIPTION: A highly interactive system for optimization
based design of multivariable control systems. Uses
color graphics and graphics tablet system intercon-
nections. Employs highly sophisticated semi-infinite
optimization algortihms.

LANGUAGE: FORTRAN 77
HOST COMPUTER: VAX 11/780

REFERENCE [53]

PROGRAM NAME: DIGIKON

DESCRIPTION: Batch and interactive packages for analysis
of single-input/single-output control systems. Intended
mainly for industrial use. Used for multi-rate digital
design. Does root locus, eigenvalue and eigenvector
analyses, Packages are designed for both continuous
and discrete systems.

LANGUAGE: FORTRAN 1V
HOST COMPUTER: IBM 360/370, CDC 6600, Honeywell 66
REFERENCE [31)

- 3.y

e Deppe et

COMPUTER AIDED DESIGN PACKAGES FOR CONTROL

PROGRAM NAME: FORTRAC

DESCRIPTION: For the design of multivariable digital
control systems. Can design a discrete control law, can
design an observer, and can run a simulation of the
system for the resulting controller. Takes the
continuous time description of a linear system and
synthesizes a control law for discrete-time-optimal
regulators, disturbance rejectors, and trackers.

LANGUAGE: FORTRAN
HOST COMPUTER: CDC 6600/CYBER-74
REFERENCE: [5]

PROGRAM NAME: HONEY-X

DESCRIPTION: Interactive package for control system
analysis and design intended for research and develop-
ment applications. Bandles multiple-input/multiple-
output systems. Does matrix manipulation and Nichols
and Nyquist analyses. Finds the time history response
of a control system. Handles Kalman filtering and
optimal control.

LANGUAGE: FORTRAN 77
HOST COMPUTER: Honeywell 66 (under MOULTICS)
REFERENCE: [31]

- o o - -

D-6

 —a b

COMPUTER AIDED DESIGN PACKAGES FOR CONTROL

-—— - - - - — - - S - —— G S G S S G G S =

PROGRAM NAME: I-G SPICE

DESCRIPTION: Interactive graphics version of the SPICE2
program, SPICE2 is a circuit analysis program
featuring AC analysis, transient analysis, DC, noise,
sensitivity, driving point impedance, Fourier,
temperature, distortion, transfer characteristics, and
transmission analysis.

LANGUAGE: FORTRAN
HOST COMPUTER: VAX, PRIME, IBM maxi's, CDC maxi's

REFERENCE: AB Associates Announcement

- -—— — o - —. - .— —— - —-— e - — -

- - = O G D G S T T G . S T S S G S S W o D D R S G e G S S S G Gl G G - ‘

PROGRAM NAME: INTERAC -- An Interactive Software Package 4
for Direct Digital Control Design

DESCRIPTION: Synthesizes a discrete multi-variable
feedback gain matrix to control a multi-input, multi-
output continuous control system. Three types of design
problems are solved: regulator, disturbance rejector,
and tracker.

LANGUAGE: FORTRAN IV
HOST COMPUTER: CDC CYBER
REFERENCE: [5]

- - - - — - - - - - ——

COMPUTER AIDED DESIGN PACKAGES FOR CONTROL

AL

| PROGRAM NAME: LPASS -- Low Pass Filter Design

DESCRIPTION: Designs maximally flat Butterworth or

: equiripple Chebychev low pass filter. First analog

¥ filter is specified, then transformed with bilinear
Z-transform to yield the equivalent digital filter.

b Interactive or batch. Must be called as a subroutine
from main program.

LANGUAGE: FORTRAN 1V
HOST COMPUTER: PDP-11/20
REFERENCE: [4: 127]

PROGRAM NAME: LSAP -- Linear Systems Analysis Program

DESCRIPTION: An interactive program with graphics
capability used for analysis and design of linear
control systems., Classical design tools: transfer
function manipulation, root locus analysis, frequency
response, time response. Analyzes both continuous and
sampled data systems. 32K overlay structure.

e L

LANGUAGE: Pascal

HOST COMPUTER: PDP-11/45, RSX~11lM operating system
REFERENCE: [32] ;

— e e !
:

D-8

ERERT D

A e A

o e A o 12 m e w

COMPUTER AIDED DESIGN PACKAGES FOR CONTROL

PROGRAM NAME: MATRIXx

DESCRIPTION: A data analysis, systems identification,
control design and simulation package. It is an inter-
active software system for computer~aided design and
analysis of control systems for dynamic plants. Handles
multiple-input/multiple~output systems. Has command
interpreter. Solves Riccati equations., Uses state-of-
the-art algorithms for linear system analysis, differ-
ential equation solution and Pourier trasformation.

LANGUAGE: ANSI FORTRAN 77
HOST COMPUTER: VAX 11/780, planned for IBM 3033, CDC
REFERENCE {63]

- - n - - - - e e = -

PROGRAM NAME: SOFE -- A Generalized Digital Simulation for
Optimal Filter Evaluation

DESCRIPTION: Helps to design and evaluate Kalman filters
for integrated systems. SOFE is a Monte Carlo
simulation that can be used for system performance
analysis once the Kalman filter is designed and
verified. A companion post-processor program, SOFEPL,
is used for doing ensemble averaging across runs and for
making pen plots., Uses batch.

LANGUAGE: '66 ANSI FORTRAN
HOST COMPUTER: CDC CYBER-74
REFERENCE : [49, 50]

COMPUTER AIDED DESIGN PACRAGES FOR CONTROL

PROGRAM NAME: SUPER~-SCEPTRE
DESCRIPTION: Analyzes electronic circuits, mechanical
systems, logic, transfer functions, and guidance and
control systems,
LANGUAGE: FORTRAN
HOST COMPUTER: VAX, PRIME, IBM maxi's, CDC maxi's

REFERENCE: AB Associates announcement

PROGRAM NAME: TOTAL -- Interactive Computer Aided Design
rrogram for Digital and Continuous Control System
Analysis and Synthesis

DESCRIPTION: An interactive computer aided design program
for continuous and discrete control systems. Classical
tools: Block diagram manipulation, root locus analysis,
frequency response, time response, Modern Techniques:
Matrix manipulation and state-~space analysis,

Continuous to discrete transformations: impluse

invariance, Tustin approximation, first difference
approximation. 65K over-lay structure (1 main, 19
primary, 25 secondary) -- total of 600,000 (octal).

LANGUAGE: FORTRAN IV / FORTRAN-77
HOST COMPUTER: CDC CYBER
REFERENCE: [39, 40]

COMPUTER AIDED DESIGN PACKAGES FOR CONTROL

’.'

&

PROGRAM NAME: VAXTOTAL

DESCRIPTION: The implementation of TOTAL (cf.) on the
VAX 11/780. Interactive mode of operation at 9600 baud.

LANGUAGE: DEC FORTRAN-77
HOST COMPUTER: VAX-11/780
REFERENCE: [41]

D-11

COMPUTER AIDED DESIGN PACKAGES FOR CONTROL

D.3 SUMMARY

Several computer—aided control system design packages
have been synopsized. A brief description is given for each
along with an indication of the language used and of the

type of computers that host the various packages.

APPENDIX E

COMMAND LANGUAGE DEFINITION

E.1 INTRODUCTION

This appendix presents the ICECAP command language
definitions in flow <chart form, These definitions
unambiguously define the ICECAP command language.
Definitions are ©provid:d in alphabetical order. The
standards used to develop the command language diagrams are

also provided.
E.,2 LIST OF COMMAND LANGUAGE DEFINITIONS

The following is a list of command language definitions
that are described in this appendix:

COPY
DEFINE
DISPLAY
FORM
HELP
PRINT
TURN

0000000

COMMAND LANGUAGE DEFINITION

E.3 COMMAND LANGUAGE DEFINITION STANDARDS

For the sake of clarity and uniformity the following
standards were used in developing the diagrams that portray

the command language definitions:

E.3.1 All diagrams are to be read from left to right.

B.3.2 Bracketed terms indicate choices. Only one choice

per bracket is allowed.

E.3.3 A lower case command word indicates that the feature

has not yet been implemented in the language.

E.3.4 The full spelling of each command word is used in

each case, It is understood that the abbreviations as

previously described are also valid.

E.3.5 It is understood that the carriage return and the

dollar sign are also valid choices at any point in the

diagram. The carriage return will cause the system to

prompt the user regarding the choices for the next word.

The dollar sign will abort the commmand.

E.3.6 It is understood that at 1least one blank must

separate the words in the command string.

&

COMMAND LANGUAGE DEFINITION

E.3.7 The blanks in some of the brackets are there only to

give the diagram balance,

E-3

e R bt b S W Bl Al

AT o R N S A W AN W bt e T, U Ak e L v

el

COMMAND LANGUAGE DEFINITION

BMAT
CMAT
CoPY { DMAT
FMAT
GMAT
LKMAT

CLTF

GTF
COoPY

HTF

OLTF

(AMAT)

~

»

rAMAT
BMAT
CMAT
< DMAT

FMAT

GMAT
kKHAT

CLTF
GTF

HTF
OLTF

Figure E-1. Command Language Definition for COPY

DEFINE

CLTF

GTF
DEFINE

HTP

OLTF

<

AMAT
BMAT
CMAT
DMAYT
FMAT
GMAT
KMAT

LSETUP

FACT
POLY

r ime

u;; €0

Pigure E~2, Command Language Def inition for DEFINE

E-4

A o it
b L,

.. COMMAND LANGUAGE DEFINITION

[AMAT
‘BMAT
CMAT
DISPLAY & DMAT
FMAT
GMAT
(_KMAT

[cLTF
GTF
DISPLAY < HTF
OLTF
_ sPECS

AUTOSCALE
MAGNIFY
DISPLAY LOCUS

SHRINK
zoom

Figure E-3, Command Language Definition for DISPLAY

OLTF
FORM CLTF USING GTF AND HTF
CLTF USING OLTF

Pigure E~4. Command Language Definition for FORM

E-5

COMMAND LANGUAGE DEFINITION

HELP

<

fSYSTEH

INITIAL
teach
COPY
define
print
display

\turn

Figure E-5,

Command Language Definition for HELP

AUTOSCALE
MAGNIFY

SHRINK
zoom

Pigure E-6.

Command Language Definition for PRINT

< COMMAND LANGUAGE DEFINITION

<4

[ANSWER T
CANCEL

CAPTION
CLOSED
DEBUG

DECIBELS ON
TURN < ECHO >

GRID OFF

HERTZ
MAINMENU
MULT
PLOT
SCALE
TITLE

J

A

Pigure E~7. Command Language Definition for TURN

T S I T TR S P MR e e e

<>

O

-

COMMAND LANGUAGE DEFINITION

E.4 SUMMARY

This appendix has provided an unambiquous definition of
the ICECAP command language in diagram form. The standards
which were used in developing the diagrams have Fkeen
provided to help the reader understand the diagrams and to
serve as a guideline for others who will be extending the

language to add more commands,

A F ey LS e

8 — gt sk e A

APPENDIX F

FORTRAN MODULE DESCRIPTIONS

F.1 INTRODUCTION

This appendix gives descriptions of new FORTRAN modules
used in ICECAP and descriptions of the VAXTOTAL FORTRAN
modules that were revised so they could be used in ICECAP.
A complete source 1listing of these modules appears in

alphabetical order in Appendix G.
F.2 DESCRIPTION OF NEW FORTRAN MODULES

The following FORTRAN modules were developed as a
result of this thesis effort, These modules were coded in
FORTRAN as they are more closely related to the FORTRAN
portion of ICECAP than they are to the Pascal portion.
TOTICE is the interface module between Pascal portion of
ICECAP and the FORTRAN modules. Since most of its code was

derived from the mainline program of VAXTOTAL which is

written in FORTRAN, it made 8ense to leave the code in
FORTRAN,

FORTRAN MODULE DESCRIPTIONS

o FINDBORD - This module is used to establish the
borders for the plot of the root 1locus. The
location of the borders is calculated based on the
location of the poles and zeroes,

0 MAGNIFY - This medule is used to double the size of
the root locus as it appears on the plot. This is
done by dividing the location of each boundary by
two,

0 SHRINK - This module is used to shrink the size of
the root 1locus as it appears on the plot by a
factor of two. This is done by multiplying the
location of each boundary by two.

0o TOTICE - This module is the main interface between
the new ICECAP modules and the o0ld VAXTOTAL
modules, ICECAP takes commands that have been
formulated by the user and translates them to
option numbers and commands that VAXTOTAL normally
processes., TOTICE passes these option numbers and
commands to the VAXTOTAL modules for action and
then returns control back to ICECAP,

o TOTINI -~ This module is the initialization module
for the VAXTOTAL modules that are used in ICECAP,

F.3 DESCRIPTION OF REVISED FORTRAN MODULES

The following is a list of the FORTRAN Modules that
have undergone major revision, A summary of the changes
made to each module is included. The modules are in
alphabetical order.

o ADAPT - FORTRAN output statements were reformatted
80 as to be compatible with the appearance of the
Pascal generated output messages, Cursor controls
were added 30 that the cursor appears right after
the prompt for user data entry rather than on the
line following the prompt.

0 ANGl - PI was made double precision.

0 BANG - PI was made double precision,

F-2

e e P T W0

3
*

FORTRAN MODULE DESCRIPTIONS

BLOCKER - FORTRAN output statements were
reformatted so as to be compatible with the
appearance of the Pascal generated output messages,

BOX - PI was made double precision.

COPYIER - FORTRAN output statements were
reformatted so as to be compatible with the
appearance of the Pascal generated output messages.
Page slewing was added for when the program prints
to the file ANSWER.DAT.

DECODER - FORTRAN output statements were
reformatted s0 as to be compatible with the
appearance of the Pascal generated output messages.
Cursor controls were added so that the cursor
appears right after the prompt for user data entry
rather than on the 1line following the prompt.
References to filenames were changed to be
compatible with names used in VAX/VMS. Messages
refering to ANSWER flag being turned on and off
were suppressed.

DMULR - Code was stripped out and replaced with a
call to ROOT which in turn calls library routine
ZRPOLY which wuses the Jenkins-Traub method of
finding roots of polynomials.,

FACTO - Unnecessary declarations were commented out
of the code.

FRACTOR - Code was stripped out and replaced with a
call to FACTO which in turn calls ROOT which in
turn calls library routine Z2RPOLY which uses the
Jenkins-Traub method of finding roots of
polynomials.

GANGl -~ PI was made double precision.

PARTL -~ FORTRAN output statements were reformatted
80 as to be compatible with the appearance of the
Pascal generated output messages., Cursor controls
vwere added so that the cursor appears right after
the prompt for user data entry rather than on the
line following the prompt,

POLY - FORTRAN output statements were reformatted
80 as to be compatible with the appearance of the
Pascal generated output messages, Cursor controls
were added 80 that the cursor appears right after
the prompt for user data entry rather than on the

F=3

s xvory

R R Loy g

FORTRAN MODULE DESCRIPTIONS

line following the prompt.

READER - The parameter ICELINE was added to calling
statement, A statement to set the FORTRAN common
variable LINE equal to ICELINE was added.

ROOT - Code was stripped out and replaced with
library routine ZRPOLY which uses the Jenkins-Traub
method of finding roots of polynomials,

ROOT10 - PI was made double precision. A condition
on when to slew the page was added. The display of
AA, BB, CC, DD was supressed at the terminal., Code
to prevent VAXTOTAL Option 49 from erroneously
resetting VAXTOTAL variables DEL and DELPR was
added., This erroneous reset had caused problems in
finding the Root Locus.

ROOT11 - FORTRAN output statements were reformatted
so as to be compatible with the appearance of the
Pascal generated output messages.

ROOT12 - FORTRAN output statements were reformatted
s0 as to be compatible with the appearance of the
Pascal generated output messages.

ROOT2 -~ This module was deleted since it is no
longer needed because ZRPOLY is being used instead
to f£ind the roots of polynomials.

SEEK -~ PI was made double precision.

SMULR - Code was stripped out and replaced with a
call to ROOT which in turn calls library routine
ZRPOLY which uses the Jenkins-Traub method of
finding roots of polynomials.

SPECS - FORTRAN output statements were reformatted
so as to be compatible with the appearance of the
Pascal generated output messages,

SWAP - Cursor controls were added so that the
cursor appears right after the prompt for user data
entry rather than on the line following the prompt.

SWAPER - FORTRAN output statements were reformatted
g0 as to be compatible with the appearance of the
Pascal generated output messages. Cursor controls
were added so that the cursor appears right after
the prompt for user data entry rather than on the
line following the prompt.

P-4

= VHEPRTETIER - - 7 S T3 4 BV TP e

el

ATy A I, . T T et

pasreeeymerey

FORTRAN MODULE DESCRIPTIONS

0 TTYPLOT - Cursor controls were added. Automatic
scaling for Root Locus plots was added. AA, BB,
CC, DD were changed to Right, Top, Left, Bottom
respectively.

0 UPDATE - Code was added to force control to return
to ICECAP rather than to do a FORTRAN stop.

F.4 SUMMARY

This appendix has provided descriptions of the new
FORTRAN modules being used in ICECAP and descriptions of the
VAXTOTAL FORTRAN modules that were revised so they could be
used in ICECAP. The next appendix gives a complete source
listing of these modules in alphabetical order. *

F=5

Major Charles J. Gembarowski was born on 20 September
1944 in Brattleboro, Vermont, He graduated from Saint
Michael's High School in 1962, He received a Bachelor of
Arts Degree in Philosophy from Saint Mary's Seminary and

University in Baltimore, Maryland in 1966. He received a

Bachelor of Science Degree in Electrical Engineering and a

Bachelor of Arts Degree in Mathematics from Arizona State
University in 1974. Major Gembarowski was the Engineer for
the onboard central computer for the E-3A Airborne Warning
and Control System (AWACS) while assigned to Hanscom Air
Force Base, Massachusetts, His most recent assignment
before entering the School of Engineering of the Air Force
Institute of Technology was as a Program Manager for the
Modular Automatic Test Equipment (MATE) Program at
Wright-Patterson Air Force Base, Ohio. Major Gembarowski is
a member of Eta Kappa Nu and Tau Beta Pi. He is married to
Ruthmary and has two children, Charles and Christopher.
Permanent Address: Brattleboro Road

North Hinsdale,
New Hampshire 03451

» . -
SECURITY CLASS'FICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS

i BEFCRE COMPLETING FORM
V. REPORT NLMDER 2. GOVY ACCESSION NO.J 3. PECI®'ENT'S CATALOG NUMBER

APIT/GE/EE/82D-34 AD A 124707

4. TITLE (and S. TYFE OF REPGRT & PERIOD COVERED
DEVELOFMENT 0P AN INTERACTIVE CONTROL MS Thesis
ENGINEERING COMPUTZR ANALYSIS PACKAGE

(ICECAP) FOR DISCRITE AND CONTINUOUS
SYSTEMS '

7. AUTHOR(s)
Charles J. Gembarowski

P
.

6. PERFORMING ORG. REPORT NUMBER

8. CONTRACT OR GRANT NUMBER(s)

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10 :;gg:‘eOERLEMErTT. PR“OBJEERCST' TASY,
Air Force Institute of Technology (AFIT/EN) K UMIT Ny
Wright-Patterson AFB, Ohlo 45433

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Aeronautical Systems Division December 1982

Flight Control and Stability Branch (ASD/ | NumBEROF PacEs
ENFTC) Wright-Patterson AFB, Ohlo 45433 171
4. MONITORING AGENCY NAME & ADDRESS(i! dilferent from Controlling Office)

1S. SECURITY CLASS. (of thie report)

Unclassified

1Sa, DECL ASSIFICATION/DOWNGRADING
SCHEDULE

———— —
16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

W relemsat AW AFR 1Y, 8')\

.
. NG

~ i oSNNI W L

&ir Porce Institute o Jechaoiegy (ATQ}
Wiight-Foterace AFR OB G

19. KEY WORDS (Continue on reverse side if necessary and identify by dlock number)

Command Language Control Systems
Computer Aided Design Discrete Time Systems
Computer Analysis Package Human Interface
Continuous Time Systems Interactive

Control Engineering VAX 11/780

20. ABSTRACT (Continue on reverse side if necessary and identily by block number)

See reverse

DD , on'ys 1473 soimion oF 1 Nov 68 15 OBsOLETE UNCLASSIFIED

e —————————————— — v
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

E

SECURIRY CLASSIFICATION OF THIS PAGE(When Deta Entered)

EﬁThis thesis reports on an effort to design and implement
- a modern interactive computer-aided design and analysis

. package for control systems. This package applies to

‘ discrete and continuous time systems. The thesis effort

continues the effort begun by Captain Glen T. Logan who

used & control engineering design and analysis computer

program called TOTAL as his starting point. .

\~ This thesis project uses top-down structured analysis
and programming techniques to define the new program called
ICECAP (Interactive Control Engineering Computer Analysis
Package). A user-oriented command language forms the basic
structure of ICECAP., On-line assistance is provided to
the user. The program makes use of CRT (Cathode Ray Tube)
terminals with a limited graphics capability to improve the
user environment.j

“The program structure allows features to be added in a
modular fashion so that others can continue the effort.
Emphasis was placed on implementing the continuous time
functions first.\

N

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

s TN T o T T e — ok
- N 5 o B d s S e 4 . A s T ey

>

